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Chapter 1

Introduction

The continuous evolution of computer hardware in the past decades has resulted
in a rapid increase of available computing power. However, not all application
areas benefited from this improvement to the same extent — most new hard-
ware features are targeted at computation-intensive tasks, including computer
games, multimedia applications and scientific computing. On the other hand,
general-purpose database systems have been shown to have problems with fully
exploiting today’s hardware performance potential [ADHW99].

Over the last two decades, CPUs evolved from relatively simple, single-
pipeline in-order devices that were easy to program into highly complex ele-
ments. These new processors introduce technologies like superscalar out-of-order
execution, SIMD instructions and multiple cores. To achieve optimal perfor-
mance on such hardware, the application code needs to follow new hardware-
conscious patterns and be amenable to compiler optimizations. Furthermore,
the increase of CPU frequencies resulted in an increasing imbalance between
the processor speed and memory latency. As a result, computers depend more
and more on multi-level cache memories that improve the memory access time,
but, again, often require the programmer to tune data access patterns in the
program.

In disk storage two trends can be observed that introduce new challenges for
system designers. First, random disk access latency improves significantly more
slowly than sequential disk bandwidth. Secondly, both disk latency and band-
width improve more slowly than the computing power of modern processors,
especially with the advent of multi-core CPUs.
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1.1 Problem statement

Database engines have been shown to adapt poorly to the hardware develop-
ments presented above, in both query processing and storage layers.

Query execution. In this layer, many database systems continue to follow
the tuple-at-a-time pipelined model working with N-ary tuples. This makes the
CPU spend most time not on the actual data processing, but on traversing the
query operator tree. Such program behavior causes problems for modern pro-
cessors, since it can lead to poor instruction-cache performance and frequent
branch mispredictions, significantly reducing the performance. Even worse, the
tuple-at-a-time execution model makes it impossible for compilers to apply
many performance-critical optimization techniques such as loop-unrolling and
SIMDization. This is in contrast with other application areas, such as scien-
tific computing, where data-intensive approaches, spending most time on the
actual data processing, can be optimized into highly efficient programs. Some
of the database performance problems can be partially solved with techniques
that have been published in the area of architecture-conscious query process-
ing. However, most of the previous work in this field concentrates on improving
isolated problems within an existing execution framework, often limiting the
achieved performance gains to single operations.

An alternative approach to query execution has been presented in the Mon-
etDB system. Here, instead of working on single tuples, the system uses column-
at-a-time materializing operators, internally working as simple operations on
arrays of values. This results in bulk processing, improving performance by re-
moving the per-tuple interpretation overhead and exposing multiple compiler
optimization opportunities. However, the full materialization implied by this
model often results in large intermediate results. This causes extra memory or
disk traffic and degrades the performance of this system when working with
large data volumes. Also, a processing unit of a full column is often too large
to apply some of the existing optimization techniques such as memory prefetch-
ing. Finally, the column algebra used in this model makes it hard to implement
multi-attribute operations, resulting in extra processing steps.

Storage. Also in this layer database systems do not fully adapt to the chang-
ing hardware properties. While the relative performance of random I/O with
respect to sequential I/O gets worse, many database systems still often rely on
random-access methods, such as unclustered indices, even in data-intensive op-
erations. To keep this method efficient, database systems use storage facilities
that contain more and more disks to provide enough throughput of random-
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access operations. This approach is unsustainable in the long run, but it is
not always clear how scan-based strategies could replace random-access ones.
Additionally, while random-access methods easily scale to handle heavy query
loads by using RAID systems and request batching, scalability of scan-based
approaches requires more investigation.

Another problem is that with computing power increasing at a faster pace
than disk performance, data delivery becomes a bottleneck even with sequential-
access approaches. This is especially visible in systems using the N-ary storage
model, where entire tuples need to be fetched from disk, even if only a small
subset of attributes is actually used. An alternative to this model are column
stores, which only read relevant attributes, requiring lower disk bandwidth. In
both storage models disk performance can also be improved with data compres-
sion. Here, it is crucial that the decompression is highly efficient, so it does not
dominate the actual data processing. Yet another challenge is making a system
efficiently support multiple concurrent users. In such scenarios, the performance
of current systems often degrades due to queries competing for resources, in-
stead of benefiting from the potential of performing the common tasks once for
many users.

1.2 Research direction

The above analysis leads to the general research question addressed in this
thesis:

How can various architecture-conscious optimization techniques be
combined to construct a coherent database architecture that efficiently
exploits the performance of modern hardware, for both in-memory
and disk-based data-intensive problems?

As the stated research question is very general, the research track presented
in this thesis originally focused on improvements to the MonetDB query execu-
tion layer. In the author’s master’s thesis on parallel query execution [Zuk02],
the fully materializing approach was identified as a significant performance and
scalability problem, and a more iterative approach was proposed, still working
within the MonetDB framework.

This idea evolved into a completely new vectorized in-cache execution ap-
proach that became the core of the MonetDB/X100 system [BZN05, [ZBNHO05,
Zuk05a]. This new approach extends the pipelined model by making the opera-
tors work on a set of tuples, represented by vectors, each consisting of hundreds
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or thousands of values of a single attribute. The execution is divided into generic
operator logic and specialized, highly efficient data processing primitives similar
to the MonetDB operators. This allows the system to achieve the high perfor-
mance that bulk-processing delivers, without sacrificing system scalability.

After obtaining very high in-memory performance results on the 100GB
TPC-H benchmark it became clear that the high processing bandwidth of the
query execution layer (reaching over one gigabyte per second on a single CPU
core) is hard to match with typical disk systems. This resulted in shifting the
focus of this research to the storage layer, with the goal of researching new
disk storage techniques and disk access strategies able to satisfy these high
requirements [Zuk05b]. Consecutively, this led to the development of a number
of methods that improve data delivery performance for scan-based applications,
resulting in a ColumnBM storage system.

The techniques proposed in this thesis have been evaluated in two applica-
tion areas: data warehousing and decision support, represented by the TPC-H
benchmark [Tra06], and large-scale information retrieval, represented by the
Terabyte TREC benchmark [CSS].

1.3 Research questions

The research directions presented above reflect the following set of the underly-
ing research questions:

1. Is it possible to combine the benefits of the tuple-at-a-time model and
bulk-processing in a coherent query execution model?

2. What techniques allow database engines to rely more on sequential scans
instead of on random I/0?

3. What techniques can improve database I/O performance for individual
queries?

4. What techniques can improve database I/O performance for heavy query
loads?

This thesis tries to provide answers to these questions. However, it does not
look at proposed improvements in isolation, but rather investigates how differ-
ent optimizations, both new and existing ones, can cooperate within a coherent
database architecture. Additionally, it has a goal of making the proposed im-
provements readily applicable to database systems.
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1.4 Research results and thesis outline
The research presented in this book leads to the following thesis statement:

With the vectorized execution model database systems can min-
imize the instructions-per-tuple cost on modern CPUs and achieve
high in-memory performance, but bandwidth-optimizing improve-
ments in the storage layer are required to scale this performance to
disk-based datasets.

This thesis statement is supported with the following scientific contributions:

Vectorized in-cache execution model. Addresses research question 1, parts
published in CIDR’05 [BZNOJ5|], DAMON’06 [ZHB06] and DAMON’08 [ZNB0§],
discussed in Chapters [[3

The thesis proposes a new execution model that combines the best properties
of the previously applied approaches. Benchmarks have demonstrated that it
brings numerous performance benefits, including reduced interpretation over-
head and multiple performance optimization opportunities. However, the strict
separation of the relational operator logic and the actual data processing, which
is the key feature of this model, makes it hard to provide fully vectorized rela-
tional operator implementations. This thesis proposes various methods of tack-
ling this problem, presenting how typical processing tasks can be efficiently vec-
torized. It also introduces new hardware-conscious techniques, for example im-
proved hash-based processing. The resulting execution engine efficiently exploits
modern CPUs and cache-memory systems and achieves in-memory performance
often one or two orders of magnitude higher than the existing approaches.

Bandwidth-optimizing disk access model. Addresses research question 2,
parts published in CIDR’05 [BZNOS], BNCOD’05 PhD Workshop [Zuk05b] and
VLDB’07 [ZHNBOT], discussed in Chapter.

With the high performance of the vectorized execution kernel, it becomes hard
to provide sufficient data delivery bandwidth from disk. With the increasing
imbalance between disk latency and bandwidth, strategies based on random
disk access are infeasible for most applications processing large data volumes.
This thesis discusses a number of approaches that avoid random accesses and
allow a scan-mostly query execution model. Additionally, even with scan-based
approaches, it is crucial to optimize the use of available disk bandwidth. The
DSM storage model, improved with lightweight compression, can reduce data
volumes that need to be transferred. Additionally, intelligent data sharing be-
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tween queries minimize the number of times the same data needs to be fetched
from disk.

Ultra-lightweight data compression. ! Addresses research question 8, pub-
lished in ICDE’06 [ZHNBO6], discussed in Chapter [

This thesis introduces a set of compression algorithms that allow trading some
CPU power for an increased perceived disk bandwidth. This approach is espe-
cially useful in column-stores, as the contiguously stored data from the same
domain offers good compression opportunities, and only the used columns need
to be decompressed. The proposed algorithms are carefully tuned for modern
CPUs, achieving decompression bandwidth in the order of gigabytes per sec-
ond, which is one or two orders of magnitude higher than popular compression
solutions. Moreover, they are optimized for the vectorized in-cache execution
pipeline: data is decompressed on a vector granularity, and it is materialized
only in the CPU cache, from where it is immediately consumed for process-
ing. These two techniques make the decompression overhead minimal, leaving
enough CPU time to process the decompressed data. As a result the query
performance for disk-based datasets is significantly improved.

Cooperative scans. Addresses research question /4, published in VLDB’07
[ZHNBO7], discussed in Chapter [}

Since sequential data access is the preferred access method for data intensive
workloads, it is important to optimize scenarios with multiple concurrent queries
performing scans at the same time. The introduced “cooperative scans” tech-
nique extends the traditional buffer manager by dynamically managing query
activity, buffer content and I/O operations to maximize data sharing between
queries and minimize disk activity. It outperforms existing shared scans meth-
ods both in query latency and system throughput, as demonstrated for various
scenarios on PAX and DSM datasets.

1Joint work with Sandor Héman, parts of this research might appear in his PhD thesis.



Chapter 2

Computer hardware
evolution

This chapter presents the aspects of computer hardware that are the most im-
portant for the query processing techniques presented in this thesis. A computer-
architecture expert might consider the material presented here as only scratching
the surface, and he or she might just skim through this chapter. On the other
hand, we hope that it provides enough background for database researchers un-
familiar with the low-level hardware details to allow understanding the rationale
behind the techniques presented later in this book.

As described in Chapter [T} this thesis focuses on two major aspects of query
execution: efficient in-memory query processing and high-performance storage
facilities. These two areas map directly on the hardware features described in
this chapter. First, in Sections and we analyze the features of modern
CPUs and the hierarchical memory infrastructure. Then, in Section [2:3] we
discuss the features of the storage systems. For all discussed areas we provide a
short description of the evolution of a particular area, the current state of the
art, and the future trends.

Naturally, the material presented in this chapter is in no way exhaustive.
For readers interested in more details, we recommend the following resources:

e “Inside the Machine” [Sto07] by Jon Stokes — this book provides an easy to
understand introduction to the CPU architecture, including the descrip-
tion of the crucial aspects of the way CPUs process the data: pipelined exe-
cution, superscalar execution, SIMD instructions and hierarchical memory

7
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infrastructure. It uses the examples from the history of two of the most
important CPU families: Intel’s Pentium (and the following Core) archi-
tectures, and Apple/IBM/Motorola PowerPC line. However, it omits the
CPU architecture contributions coming from AMD and SUN processors,
and does not discuss the new hybrid processor architectures such as STI’s
Cell [IBMOT7] and Intel’s Tera-scale [ACJT07].

e “Computer Architecture — A Quantitative Approach” [HP07] by John L.
Hennessy and David A. Patterson — this book provides a wider overview
of computer architecture, including not only the CPU internals but also
storage facilities. The book is significantly more technical than [Sto07],
so it is recommended for readers with some background in these areas.
Additionally, the most recent, 4th edition, provides an extensive discussion
of the multi-core generation of modern CPUs.

e journals: ACM Transactions on Storage (TOS), ACM Transactions on Ar-
chitecture and Code Optimization (TACO), ACM Transactions on Com-
puter Systems (TOCS).

e conference proceedings: International Symposium om Computer Architec-
ture (ISCA), International Conference on Supercomputing (ICS), Interna-
tional Conference on Computer Design (ICCD).

2.1 Modern CPU architecture

Over the last few decades, the architecture of CPUs evolved greatly and became
extremely complex. Table 2J] and Figure 2:I] demonstrate the milestones in
that evolution, using Intel’s CPU line as an example. This section describes
the architectural features of the modern CPUs that are directly related to the
research presented in this thesis.

2.1.1 Basic CPU computing model

A basic model of a CPU is presented in the left-most side of Figure 2.2} This
model is highly simplified — the right-most side of the figure presents a more
complex architecture of Pentium 4 CPU. Looking at the basic CPU architecture,
the following major components can be identified:

Data is a set of operands for the CPU.
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Processor 16-bit 32-bit 5-stage 2-way Out-of- |Out-of-order,|Multi-core
address/,|address/| pipeline, super- order, super-
bus, bus, on-chip scalar, 3-way pipelined,
micro- | micro- |I&D caches|64-bit bus| super- on-chip
coded coded FPU scalar L2 cache
Product 80286 80386 80486 Pentium |[PentiumPro| Pentium4 | CoreDuo
Year 1982 1985 1989 1993 1997 2001 2006
Transistors | 134 275 1,200 3,100 5,500 42,000 151,600
(thousands)
Latency 6 5 5 5 10 22 12
(clocks)
Bus width 16 32 32 64 64 64 64
(bits)
Clock rate 12.5 16 25 66 200 1500 2333
(MHz)
Bandwidth 2 6 25 132 600 4500 21000
(MIPS)
Latency 320 313 200 76 50 15 5
(ns)

Table 2.1: Milestones in the CPU development, looking at the Intel’s CPU line
(based on [Pat04], with the 2006 milestone added)
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Figure 2.1: Evolution of CPU characteristics
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Figure 2.2: A simplified CPU model (left) and a diagram of Pentium 4 CPU

(right, from [Sto07])

Code is a set of commands for the CPU, describing what to do with the data

Storage is a container where the data and the code are stored. For now, we
can assume it is the main memory. CPUs typically cannot directly work
on the data stored there.

Registers are the local CPU storage, used to keep the data the CPU is cur-
rently working on. Data can be transferred between registers and storage

with special instructions.

Execution unit is a part of a CPU that performs requests tasks on given data,
for example addition of two elements. Typically, it operates on data taken
from registers, and it also saves the results in a register.
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CPU Cycles. CPU operates in cycles, which are synchronized by clock pulses,
issued by an external clock generator. The frequency of the clock corresponds
with the frequency of the CPU. In our simplified model, in each CPU cycle
the processor takes a single instruction from the code stream and performs a
requested instruction on the execution unit.

ISA. The code that CPU executes consists of a sequence of instructions, hav-
ing different forms, depending on the instruction set architecture (ISA) a given
CPU supports. Currently, the most popular ISA is 286 (and its 64-bit exten-
sion z64) present in CPUs such as Intel’s Pentium or the AMD Athlon. While
the ISA serves as an interface to a CPU, different CPUs can internally imple-
ment instructions from an ISA in different ways. Usually this is performed by
translating the ISA opcodes into internal microcodes (also known as microops or
uops), which are the actual commands executed by the CPU. This translation is
especially important in CISC (complex instruction set computing) CPUs, which
often need to translate complex ISA instructions (e.g. string operations in x86)
into a sequence of microcodes.

Execution stages. In the basic computing model, every cycle the processor
executes the next instruction. This execution can be decomposed into multiple
sequentially performed stages. The exact number and the nature of these stages
is different for various processors, but usually they follow this general set of
stages, presented in the top part of Figure 2.3}

e Instruction Fetch (IF) - get the next instruction to execute.

o Instruction Decode (ID) — decode the instruction from the binary op-
code form into the internal representation. Translation from ISA into mi-
crocodes also happens here.

o Ezecute (EX) — perform the requested task. While in a simplified CPU
model we assumed one execution unit, this can involve multiple different
devices, including arithmetic logic unit (ALU), floating-point unit (FPU),
load-store unit (SPU) and more.

e Write-back (WB) — save the result of the execution.

Usually, each of these stages is performed by a specialized CPU unit. Since the
stages execute in a fully sequential manner, this means that at a given time only
one part of the CPU is busy. As a result, the computational resources of the
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Figure 2.3: Comparison of sequential (top) and pipelined (bottom) instruction
execution

CPU are not fully used. For example, when an instruction is being fetched, the
execute unit is idle. Additionally, if an instruction is to be executed in a single
CPU clock cycle, the time of a cycle needs to be long enough to allow all stages
to execute, making it harder to increase the frequency of a CPU.

2.1.2 Pipelined execution

To improve the utilization of the CPU resources, the classical sequential execu-
tion has been replaced with a pipelined execution, presented in the bottom part
of Figure In this model, different instructions are executed at the same time,
performing different processing stages. This keeps units responsible for different
stages busy all the time.

Since every stage takes only a fraction of time required by the entire se-
quence, this also allows shorter CPU clock cycle lengths, and hence higher CPU
frequencies. In Figure 2:3] the cycle length decreased perfectly to be one fourth
of the original length. However, in real CPUs the lengths of the stages are not
exactly the same, making the cycle length higher than the length expected from
a simple division of the original length by the number of stages.
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Pipelined execution, while not improving the execution latency of a single
instruction, significantly improves the instruction completion rate, or instruction
throughput, of a CPU. In our (simplified) example, this rate is increased four
times.

2.1.3 SIMD instructions

Execution units (e.g. ALU) typically work with instructions that perform a given
operation for a single set of operands (e.g. a single addition of two integers).
This follows the Single-Instruction-Single-Data (SISD) [Fly72] execution model.
However, there are many cases in which exactly the same operation needs to be
performed for a large number of elements. A simple example is negating an 8-bit
grayscale image, stored in memory as a sequence of bytes, each representing a
pixel. A straightforward SISD implementation would look as follows:

for (i = 0; i < num_pixels; i++)
output[i] = 255 - input[il;

A different approach is to use Single-Instruction-Multiple-Data (SIMD) execu-
tion model, where a single instruction can perform the same operation on multi-
ple elements at once. For example, imagine a CPU that has a special SIMD ALU
that can perform a subtraction of 8 bytes from a constant with one instruction.
Then the code becomes:

for (i = 0; i < num_pixels; i += 8 )
simd_sub_const_vector (output + i, 255, input + i);

In this case, thanks to using a SIMD instruction, the loop needs to have 8 times
fewer iterations, significantly improving the performance.

SIMD instructions are very useful in areas processing large data volumes,
including multimedia processing, 3D modeling and scientific computing. To im-
prove the performance in these areas, most modern CPUs provide some form
of SIMD instructions. In particular, the most popular 86 processors provide a
set of SIMD extensions, including MMX, 3DNow! and SSE (versions 1 to 4).
This computational model is also a base for GPU-based processing and some
specialized processors, e.g. SPUs in a Cell processor (see Section.

2.1.4 Superscalar execution

In a classical pipelined execution, only one instruction can be at a given stage
of the processing pipeline. To further increase the CPU instruction throughput,



14 Chapter 2: Computer hardware evolution

modern CPUs use multiple execution units, allowing a “wider” pipeline, with
different instructions working on the same stage of processing. This is achieved
by extending the number of operands a given execution unit can process (e.g. by
making the instruction-fetch unit fetch 4 instructions at once), or by introducing
multiple execution units working on the same stage. In our simplified CPU
model, the latter can be achieved by having more than one ALU. In modern
CPUs there are not only multiple ALUs, but also other execution units for
different types of operations, including floating-point units (FPU), memory load-
store units (LSU) and SIMD units, possibly few of each.

Typically, the “width” of a superscalar CPU is measured as the number
of instruction that can enter the “execute” stage every cycle — this number is
usually smaller than the total number of all available execution units.

2.1.5 Hazards

Pipelined and superscalar execution only achieve their full efficiency if the pro-
cessing pipelines are filled at every moment. To do so, at every CPU cycle
the maximum available number of instructions should be dispatched for exe-
cution. However, to dispatch an instruction all the prerequisites for it should
be matched, including availability of code, data and internal CPU resources.
When one of the conditions is not met, the instruction needs to be delayed, and
a pipeline-bubble, or a no-op instruction, enters the pipeline instead. A bubble
in a pipeline causes a suboptimal resource utilization, and in effect reduces the
CPU instruction completion ratio.

In this section we discuss various events, usually called “hazards”, that can
result in instruction delays and pipeline bubbles.

2.1.5.1 Data hazards

Data hazards are situations when an instruction cannot be executed because
some of the inputs for it are not ready. Let us look at the following code snippet.

c

+
e c + d;

In this case, the computation of e cannot start before the result of ¢ is computed.
As a result, the second addition is delayed.

CPUs try to limit the impact of data hazards by various techniques. In
forwarding, the output of a computation from one ALU can be directly passed
back as an input to this (or different) ALU, bypassing the register-write phase.
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Another technique is register renaming that can improve the performance in
case of false register conflicts. It exploits the fact that processors usually have
more physical registers than visible through the ISA. Here is an example of a
false register conflict.

c a + b;

d + e;

At a first glance, the first instruction has to read the content of the a register,
before the second one writes its result to it. However, we can see that these
instructions are completely independent. As a result, the CPU can map the a
register in the first instruction to one physical register, and to another one in
the second instruction. Thanks to that, both instructions can execute simulta-
neously.

While typically not considered data hazards, cache-misses also cause execu-
tion units to wait for data delivery. This problem is described in Section 2:2.3]

2.1.5.2 Control hazards

One of the major problems in superscalar pipelines is making sure that the CPU
knows what instructions will be executed next. In case of a program without any
conditional statements and function calls, the code is just a well-defined sequence
of statements. However, if the sequence of instructions is hard to determine
in advance, it might be impossible to schedule the next instructions, causing
pipeline delays.

Branch prediction. Branch instructions are a typical example of a control
hazard. Usually, CPUs use branch prediction [McF93] to guess the outcome of
the involved predicate, and uses speculative execution to follow the expected
path. This prediction process comes in two variants: static and dynamic. Static
prediction for a given branch always assumes the same output. It is relatively
efficient in some special cases, for example in backward-branches that usually
correspond to program loops and are taken in the majority of cases. Branch hints
are another related technique, where a programmer or a compiler can annotate
the code with the most likely branch outcome. Dynamic prediction is a scheme
that analyzes the history of a given predicate, and uses it to guess the outcome of
the next computation. Additionally, some dynamic prediction schemes not only
store the expected branch result, but also the instruction that is to be executed
when branch is taken, reducing the need to fetch/decode it, allowing it to enter
the execution pipeline immediately. While beneficial, prediction techniques and
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Figure 2.4: Branch misprediction: pipeline flushing and pipeline bubbles

branch hints are not perfect. When a branch misprediction happens, the entire
pipeline (or large part of it) needs to be flushed (cleared), and the computation
needs to start from the beginning.

For example, in the following code, computing the sum of numbers from 1
to N, the loop branch can be predicted as taken:

; input: a is 0, b is N; output: sum of 1..N in b

loop:
add a, a, b ;a=a+b
dec b ; decrease b, set flag ’zero’ if it became zero
bnz loop ; branch to ’loop’ if the zero flag is not set
mov b, a ; b=a

This code, when executed for N = 2, will result in the following sequence of
instructions:

add a, a, b ;
dec b

bnz loop
add a, a, b
dec b

bnz loop
mov b, a

, branch correctly predicted as taken

, branch incorrectly predicted as taken
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Figure 2:4] demonstrates CPU activity when executing this sequence of in-
structions. We see that after fetching I-3, the CPU correctly predicts the branch
will be taken, and fetches the proper instruction I-4. However, after fetching I-6,
the CPU assumes an incorrect code flow, and starts executing a wrong sequence
of instructions I-7°, I-8’, I-9’. Only when I-6 is fully evaluated, the CPU detects
that the taken sequence is incorrect, and it needs to flush the pipeline and start
executing from the proper I-7 instruction. However, when I-7 enters the “fetch”
phase, no other instructions can be in the latter phases, and pipeline bubbles



Section 2.1: Modern CPU architecture 17

occur, wasting system resources. Note that the delay between the properly pre-
dicted I-3 and I-4 is a single cycle, while the delay between I-6 and I-7 is four
cycles. This demonstrates how dangerous a branch misprediction can be for the
CPU efficiency.

Indirect branches. Branch prediction addresses the problem of direct bran-
ches, i.e. branches where the jump address is encoded in the instruction. How-
ever, there is a class of situations where the branch is indirect, with the jump
address stored in a register or in memory. Typical examples include calling a
function from a function array, or polymorphic method calls in object-oriented
languages. Such cases are often handled by branch-target-buffers (BTB), where
for a given originating address the last target address is stored. This is an effi-
cient solution if the indirect branch target is relatively static. However, in many
cases simple BTBs are not efficient enough, and more sophisticated methods are
necessary [DH9S].

Predication. Another technique that overcomes branch problems is predica-
tion. Let us analyze the following code:

if (a < b)
at+;
else
bt++;

On a traditional CPU, that does not use predication, it would compile into
assembly using a conditional branch instruction similar to this:

cmp a,b ; compare a and b, set the status flags accordingly
blt lower ; branch to ’lower’ if a < b
inc b ; a >= b, increase b
Jj end ; unconditional jump to ’end’
lower:
inc a ; a < b, increase a
end:

On CPUs that provide predication instructions can be annotated by a predicate
that defines if a particular instruction should be executed. For example, the
predicated code could look as follows:

cmp a,b ; compare a and b, set the flags accordingly
inclt a ; if lower-than (LT) flag is set, increase a
incge b ; if greater-equal (GE) flag is set, increase b
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In this scenario, the result of only one instruction will be used, without any
conditional branching. Predication is provided by e.g. ARM and TA-64 (Ita-
nium) architectures. It often provides a significant speed improvement, and,
while single instruction codes can get longer because of extra bits needed for
the predicate definition, the overall code size can get reduced due to a smaller
number of instructions.

2.1.5.3 Structure hazards

Another type of hazards are the structure hazards, related to the computational
limits of modern CPUs. For example, on many architectures it is possible to
fetch/decode more than one instruction in one CPU cycle, but only one in-
struction per-cycle can use load-store units. In such a situation, if two memory
accessing instructions are decoded at the same time, one of them needs to be
delayed, due to insufficient LSU resources.

2.1.6 Deepening the pipeline

As presented so far, the execution pipeline is relatively simple, and only consists
of a few stages. However, modern CPUs use a full bag of tricks that improve
performance and try to limit the negative effect of the discussed hazards. As
a result, the pipeline needs to be broken into more logical steps. Additionally,
the steps are getting more and more complicated, and with an increasing CPU
frequency, they often cannot execute in a single clock cycle. For this reason, the
stages need to be broken into smaller sub-stages, further increasing the pipeline
depth, and resulting in super-pipelined CPUs.

Since the clock frequency used to be the most distinguishable CPU fea-
ture, with higher frequencies positively influencing sales, processor companies,
especially Intel, for a long time had this parameter as the focus of their CPU
architecture design. An extreme example are Pentium 4 Prescott CPUs that
have a pipeline of 31-stages. Such long pipelines allowed for very high CPU
frequency, resulting in great performance on CPU-friendly code. On the other
hand, the hazard-induced penalties in such pipelines become even higher. This
increasing penalty has led to a reverse in the trend, with recent CPUs having
shorter pipelines (e.g. 14 stages in Intel Core2). Still, even with such “short”
pipelines the impact of pipeline bubbles is significant, stressing the importance
of generating code that contains as little hazards as possible.
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2.1.7 Development trends and future architectures

For decades the major focus of the CPU designers was the performance of a sin-
gle CPU. Typical methods of improving this performance are increasing clock
frequency, super-scalar CPUs, out-of-order execution, and larger cache sizes.
However, further improvements in these already highly-sophisticated areas result
in relatively small gains, significantly increasing system complexity and power
consumption at the same time. Furthermore, many application areas, among
them database systems, have problems with fully exploiting such complex ar-
chitectures. As a result, in the last few years new trends in CPU architectures
become popular.

2.1.7.1 Simultaneous multithreading

In many cases, a single executing thread has problems with full utilization of
the available computational resources in modern superscalar CPUs. This is be-
cause of instruction-issue delays related to data-dependencies, memory waits
(see Section etc. Simultaneous multithreading (SMT) [TEL95|] improves
this situation by allowing multiple threads to be executing at the same time.
This is achieved by having a per-thread copy of some of the CPU sections,
e.g. registers, but sharing a single instance of the main execution resources be-
tween the threads. Multiple hardware threads provide more instructions every
cycle, and also allow hiding delays in one thread by executing instructions from
another.

SMT is a relatively cheap technique in terms of incorporating into CPUs, as
the added per-thread CPU infrastructure is small. It has been implemented in
some of Intel’s Pentium 4 and Core i7 CPUs (as hyper-threading [MBHT02|),
IBM Power5 [SKTT05] and Sun Microsystems UltraSparc chips [Sunb] that
allow even 8 simultaneous threads in UltraSparc T2 CPUs.

2.1.7.2 Chip multiprocessors

With advances in the chip miniaturization process, more and more transistors
become available on a die [Mo0065]. This allows not only to create more sophisti-
cated CPU cores, but also, to put multiple fully functional cores on a single chip.
Typically, cores have both designated private memory (usually L1 cache), as
well as shared cache memory (usually L2). This technology, known as chip mul-
tiprocessors (CMP), recently became a de-facto standard, being available both
in mainstream CPUs, including Intel’s Core and AMD’s Athlon and Phenom
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chips (up to 4 cores), as well as server processors, including Sun’s UltraSparc
(up to 8 cores).

Quick widespread adoption of CMP CPUs puts new challenges on developers.
To utilize the performance of the underlying hardware, parallel programming
techniques, previously applied to a relatively limited number of applications,
now need to be used in most types of programs. Furthermore, optimizing soft-
ware for the new architecture becomes increasingly hard with higher degrees of
parallelism. Another complication factor occurs in situations where CMP and
SMT are combined in a single chip, as is the case e.g. in Sun’s UltraSparc T2
CPU that can have 8 cores, each with 8-way SMT, resulting in 64 concurrently
available hardware threads.

2.1.7.3 Heterogeneous computation platforms

Previously discussed developments in processor technology assumed that ap-
plications are running on top of one or more identical general purpose pro-
cessors. However, in modern computers, more and more computational tasks
are off-loaded to designated specialized units. A typical example are graphics
processing units (GPUs), optimized for processing 2D and 3D graphics, and
available in almost every new computer, either as dedicated graphics cards, or
integrated in the motherboard chipset. Other examples include devices special-
ized for digital signal processing (DSP), video en- and de-coding, network traffic
handling, physics simulation and data encryption. While in most cases these
additional processors are used only for their designated task, in many cases
they can be used for other applications. Again, a typical example are graph-
ics cards that provide pure computational power often exceeding the CPU, as
demonstrated with a record-breaking sort performance [GGKMO6]. Thanks to
this high speed, as well as the continuously improving programming flexibility
of these devices (e.g. NVIDIA CUDA [NVI08]), GPUs became a very popular
platform for numeric-intensive tasks.

Multiple computational units with different properties are also possible even
on a single chip. For example, the STT Cell Broadband Engine [IBMO07] con-
sists of a single general-purpose processor and 8 additional cores specialized for
streaming applications (e.g. multimedia). Another example is the future Intel
Tera-Scale platform [HBKO06, |ACJT07| that envisions 10s to 100s different cores
with different functionality on a single chip. Also in systems-on-chip [Wol04]
(SoC) designs multiple functional units are combined on a single chip. For exam-
ple, Sun’s UltraSparc T2 processor [Sunb] combines traditional general-purpose
cores with a network controller and a cryptographic unit. SoC devices are es-
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Memory DRAM| Page Fast Fast Synchronous| Double | DDR2

module mode |page mode|page mode| DRAM |data rate|]SDRAM
DRAM| DRAM DRAM SDRAM

Year 1980 | 1983 1986 1993 1997 2000 2006

Module 16 16 32 64 64 64 64

width (bits)

Mbits per 0.06 0.25 1 16 64 256 1024

DRAM chip

Bandwidth 13 40 160 267 640 1600 8533

(MBit/sec)

Latency 225 170 125 75 62 52 36

(ns)

Table 2.2: Milestones in the DRAM development (adapted from [Pat04], with
the 2006 milestone added)

pecially popular in embedded environments, and include e.g. Intel IXP series,
Philips Nexperia and Texas Instrument OMAP chips.

The heterogeneous nature of the discussed platforms brings additional chal-
lenges for software developers. For optimal performance, applications need to be
designed to exploit the available hardware, e.g. by performing a particular task
using computational units best suited for it. However, with increasing hetero-
geneity of the computers, optimizing an application for every single configura-
tion is not economically feasible. This calls for applications that can dynamically
adapt to the available computing resources. An example of such approach is the
OpenCL framework [Khr09], where CPUs, GPUs and other computing devices
can be transparently used by the application.

2.2 Memory system

So far in our discussion, we have focused on the internal details of the CPU
execution pipeline, assuming both data and code come from an abstract exter-
nal “storage”. For a long time this “storage” was just main-memory, typically
consisting of DRAM chips. Table[2:2shows the major evolution steps of DRAM
over last decades, and the trends are visualized in Figure Comparing to
Figure 2] we see that over time the memory latency improves significantly
more slowly than the CPU frequency. This means that a modern CPU, when
performing a memory-access instruction, needs to wait a significant amount of
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Figure 2.5: Memory chips characteristics evolution

time before the data is actually delivered from memory. This imbalance is actu-
ally significantly higher than the raw numbers in Tables 2.1] and 2:2] suggest, as
the actual cost of the memory-access stage is only a fraction of the CPU latency,
since other pipeline stages are included in this number. In reality, to satisfy the
CPU data needs, the memory should deliver the data with the latency of only a
few CPU cycles. Since commonly used dynamic-RAM (DRAM) memory chips
cannot provide such performance, accessing them directly is very expensive.

2.2.1 Hierarchical memory system

To overcome the problem of expensive main memory access, a simple main-
memory + CPU architecture has been extended with cache memories — small,
but fast specialized memories, designed to keep the most recently accessed data,
typically built with static-RAM (SRAM) chips [Smi82]. Cache memories hold
both the process data as well as program instructions — this leads to distinguish-
ing between D-cache and I-cache, respectively. With proper application design,
most memory accesses can use this fast memory, minimizing the main-memory
latency overhead. Over time, with further advancements of chip manufacturing
techniques, multiple cache-memory levels have been introduced, resulting in a
hierarchical memory system. An example of such a system is presented in Fig-
ure 2.6] Typically, a modern computer memory hierarchy is a combination of
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the following levels, ordered by the increasing latency:

o registers — CPU registers can be seen as the closest storage for the CPU,
and often the only storage that CPU can perform computation on. Typi-
cally, there are 4-256 registers and accessing them takes 1-3 cycles.

e L1 cache — small (ca. 16-128KB) and fast (2-10 cycles) memory, on-chip,
typically divided into I-cache and D-cache

e L2 cache — larger (ca. 256-8192KB) but slower (10-30 cycles) memory,
usually on-chip, typically shared by instructions and data

e L3 cache — relatively large (1IMB+) but slow cache, either on-chip or on a
motherboard. Only on some platforms.

e main memory — large (gigabytes) but relatively slow (50-300 cycles) stor-
age.

e solid-state disk - large (tens or hundreds of gigabytes) but moderately slow
(tens to hundreds of thousands of cycles).

e magnetic disk — very large (hundreds of gigabytes or terabytes) but very
slow (millions of cycles) storage.

2.2.2 Cache memory organization

Cache memory is typically divided into a set of fixed-size cache lines, usually
ranging from 16 to 128 bytes. To simplify cache management, each cache line
holds data from an area in main memory aligned to the cache line size. Addi-
tionally, when data is transferred into cache, typically the entire cache line is
filled. This means that even when asking for a single byte, the memory sub-
system will deliver e.g. 64 bytes, and that amount of cache will be used. As a
result, small data requests lead to poor cache utilization, promoting the use of
large data transfers.

Cache lines are usually organized as two-dimensional arrays, where one di-
mension is the set and the other is the set associativity [PHS99]. For a given
memory address, its set id is typically determined by a function on the address
bits. Within a set, the line id is determined by matching the reference address

IDisk storage is accessible as a “normal” memory through virtual memory facilities (see

Section
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Figure 2.6: Hierarchical memory structure: registers, caches, main memory, vir-
tual memory on disk (from [Bon02])

with the address tags of the stored data. If there is only a single set (all addresses
map onto the same set id), the cache is referred to fully associative. On the other
extreme, caches with a set associativity of 1 are called directly mapped. Typi-
cally, the associativity of the caches is small, in range of 1..16, since an increased
number of potential lines for a referenced address can negatively influence the
cache access time. Note that in a hierarchical memory system caches at different
levels may vary in size, cache-line size, associativity, etc.

2.2.3 Cache memory operation and control

When CPU refers to a particular memory location, the set id for the referenced
address is computed and the cache lines in this set are checked. If one of the
address tags matches the requested address, a cache hit occurs, and the cache
line can be delivered to the CPU immediately. Typically, this line is also marked
as referenced, to influence the replacement policy. If the address is not in any of
the locations, a cache miss occurs. In this situation, one of the lines is evicted,
using some fast replacement policy (e.g. LRU), and a request to fetch the needed
memory area is sent to the memory controller (or a higher cache level). Once
that request is completed, the cached line is sent to the CPU, and processing
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can continue.

This simple behavior is intuitive, but there are situations where extra cache
functionality is beneficial. A typical example is sequential memory access: in this
situation, modern CPUs can predict that after fetching a particular cache line,
soon the next line will be needed, and prefetch it. For example, the Intel Core
architecture provides two components, DCU and DPL [Int07a], responsible for
prefetching data into L1 and L2 cache levels, respectively. This allows overlap-
ping the memory access latency with the current CPU activity. Similarly, if an
application has the up-front knowledge about which memory locations will be
referenced next, it can use software prefetching instructions [Int07bl [Adv05] to
issue requests for these locations. Since prefetching can lead to increased CPU
activity and memory traffic, if not used properly, it can have an adversary effect,
especially in case of more expensive and error-prone software prefetching.

Special instructions are also available for other cache-controlling tasks. In
situations when some computed data is known not to be needed for now, it can
be saved directly into main-memory, without polluting the cache. Similarly, if
some previously read memory is known to be of no use, it can be flushed from
the cache to reduce evictions of other, more useful data.

Since cache memories serve as a view of a subset of main memory, it is cru-
cial that the changes done to main memory are reflected in the cache content.
This is especially important in multi-CPU and multi-core systems, where dif-
ferent processing units have private caches. In such architectures, special cache-
coherence protocols are being used [Ste90][HPOT, Section 4.2] to guarantee data
consistency. The overhead of these protocols can be significant, therefore it is
important to design parallel algorithms such that the need of applying these
consistency mechanisms is minimized.

2.2.4 Virtual memory

Another important aspect of the memory infrastructure is the difference be-
tween the physical and the virtual memory. In early computer generations, the
entire computer memory was directly accessible to the program. In modern com-
puters, however, the address space of an application is explicitly managed by
the operating system. Typically it does not constitute a single contiguous area,
but instead, it consists of a set of pages, where each virtual page refers to some
physical memory area. Page sizes are typically in range of few kilobytes (4KB on
286 platforms), but some systems allow multiple different page sizes, reaching
256MB on Intel Itanium architecture [Int06]. Having virtual pages allows mul-
tiple improvements to a vanilla memory system, including enhanced security,
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sharing memory between applications, on-demand physical memory allocation,
copy-on-write memory areas, memory-mapped files and more.

One performance problem that the virtual memory systems introduce is the
need of translating a virtual address as seen by an application into a physi-
cal memory area. Typically, an operating system stores a page table that pro-
vides this translation. Since accessing this table for each address translation can
be expensive, CPUs typically use a highly specialized cache, called translation
lookaside buffer (TLB), that stores translations for the recently accessed pages.
Like cache memory, it can also be hierarchical (L1, L2), and independent for
instructions and data (I-TLB, D-TLB).

The TLB capacity can be small, e.g. L1 D-TLB on Athlon 64 can keep
track of 32 recently accessed 4KB pages [Adv05]). Since TLB-misses can be as
expensive as cache-misses, the applications need to take special care of avoiding
them. Typically, sequential access patterns do not incur these problems, but
random memory accesses can easily result in frequent misses. One of the methods
of reducing the TLB misses is to explicitly use larger pages, available in some
operating systems. This allows to have fast translation for larger memory area
(e.g. 8 entries for 2MB pages on Athlon 64 [Adv05]), but may result in an
increased memory fragmentation.

2.2.5 Future trends

Continuous increase in the cache sizes allows larger datasets to be quickly ac-
cessed, but also results in an increased access latency. This is especially vis-
ible in L2 caches, where the latency increased by a factor of 3 in the last
decade [HPJT07|. As a result, further increases in the L2 sizes can have a detri-
mental effect for applications with a working set already fitting in the cache.
To overcome this problem, manufacturers limit the L2 cache sizes, and intro-
duce additional L3 cache levels. While this solution used to be applied mostly
in the server market, in CPUs like Intel Itanium 2 (6MB on-chip L3) and IBM
Power6 (32MB off-chip L3), AMD Phenom and Core i7 chips make this solution
mainstream, with 2MB and 8MB on-chip L3 cache, respectively.

The evolution of the cache memory hierarchy is also heavily influenced by
multi-core CPUs, since typically parts of the hierarchy are private to each core,
while other parts are shared. For example, Intel Core2 CPU uses private L1
caches and shared L2, while AMD Phenom uses private .1 and L2 caches and
shared L3. This variety of configurations makes it continuously more challenging
to provide solutions optimally exploiting all of them.
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RPM 3600 5400 7200 10000 15000 15000
Product CDC Wrenl| Seagate | Seagate | Seagate | Seagate | Seagate
94145-36 |ST41600|ST15150|ST39102(ST373453|ST3450856
Year 1983 1990 1994 1998 2003 2008
Capacity (GB) 0.03 1.4 4.3 9.1 73.4 450
Bandwidth 0.6 4 9 24 86 166
(MB/sec)
Latency 48.3 17.1 12.7 8.8 5.7 5.4
(msec)

Table 2.3: Milestones in the hard-drive technology development (from [Pat04],
with the 2008 milestone added)

With the increasing popularity of multi-core chips, and hence parallel pro-
grams, the synchronization techniques between processes become increasingly
important. Traditional locking mechanisms, while known for decades, are of-
ten hard to use, expensive and error-prone. As a result, recently, hardware
mechanisms for lock-free operations have been proposed. Transactional mem-
ory [HM93] introduces a mechanism that allows a set of memory operations to
execute atomically, with an explicit commit at the end of a code block. Since
this commit can succeed or fail, the software needs to check for the result and
adapt to it. Another solution that does not require any software modifications
has been proposed with transactional lock removal [RG02]. Here, the hardware
can identify the transactions looking at the locks acquired by the program, spec-
ulatively execute them without acquiring a lock, and apply conflict resolution
schemes in case of conflicts. Both proposals reduce the need of locking and hence
can significantly improve performance.

2.3 Hard-disk storage

The previous two sections discussed the major features of modern CPUs and
memory subsystems, crucial for high-performance in-memory data processing.
Since this thesis focuses on large-scale data sets, we now focus on the charac-
teristics of typical storage systems.

The most popular medium for large-volume data storage are magnetic disks,
with an example disk presented on the left-most side of Figure 2.7 In this
solution, data is stored on platters with a magnetic surface and accessed with
a moving head. Each platter is divided into tracks, and each track consists of
sectors. Platters are attached to rotating spindles that perform thousands of
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*FM: Flash Memory
*FBC: Flash Bus Controller
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Figure 2.7: Hard-drive diagram (left) and an example solid-state disk diagram
(Mtron SLC, right)

rotations per minute. To read a particular data unit, the head needs to perform
a seek to a proper track, and wait for the platter to rotate to a proper position
to read a given sector. As a result, disk latency can be computed as a sum of
the seek time, rotational delay and the transfer time.

Table 2:3] presents the major development milestones for the hard-drive tech-
nology over last 25 years. The performance trends, visualized in Figure 2.8 are
similar to those of memory chips, presented in Figure 2.5} while the capacity
grows at a very rapid pace, the bandwidth, while steadily improving, lags be-
hind it, and the latency improves very slowly. In terms of bandwidth, disks are
typically in order of 100 times slower than memory, and in terms of latency, this
difference is in order of 10,000 to 100,000. As a result, efficient data delivery
from disk is a significantly harder problem than memory access.

The other factor that distinguishes hard drive performance from main mem-
ory is the difference between the cost of random access and sequential band-
width. Reading a single byte from memory takes in range of 100ns if random
access is used and a fraction of a nanosecond if sequential access is used,? a 100
to 1000 times difference. On disk, reading a single byte takes ca. 5ms with ran-
dom access, and ca. 20ns with sequential access, resulting in a difference factor
of 100,000 to 1,000,000. As a result, on disk it is even more important to use
sequential access methods.

2assuming multi-gigabyte sequential RAM bandwidth possible with prefetching mecha-

nisms
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Figure 2.8: Hard-drive characteristics evolution

2.3.1 Disk performance improvements

One of the methods of improving access to disk is caching the most recently
accessed disk areas in the available main memory. This plays a similar role as
cache-memories in hierarchical memory systems. Caching can be also performed
on the disk itself — modern disks can have cache memories of several megabytes.

Another improvement, performed in both operating systems as well as in the
disk controller, is request scheduling. In many cases, especially with random-
access-oriented applications, it is common to have multiple outstanding read or
write requests at the same time. These pending accesses can be re-ordered to
match the movement of a disk arm and platter rotation, reducing the average
request latency [TP72]. It also allows for prefetching data from disk, similarly
as in memory prefetching.

Relatively high sequential disk bandwidth is only possible if the high cost of
moving the disk head and waiting for the platter rotation is paid once for a large
unit of data. This is especially important in scan-intensive applications, where
multiple processes perform sequential data access. In such cases, it is important
to use large, isolated I/O operations, to amortize the random seek cost. This is
presented in Figure 2.9 with an experiment that measures the bandwidth of the
disk system by issuing a sequence of sequential or random disk accesses, with
a varying I/O unit size, and not using the caching and prefetching facilities
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Figure 2.9: Disk read bandwidth depending on the I/O unit size, using sequential
and random access patterns

provided by the operating system. This experiment shows that to get a good
bandwidth with random accesses, access granularity needs to be in range of a
few megabytes. Note that databases and operating systems typically use much
smaller disk pages (4-64KB).

2.3.2 RAID systems

To improve the performance of the storage layer, it is common to use multiple
disks, typically in some form of a RAID system [PGKS8§|. While many different
RAID configurations are possible, they typically exploit three basic concepts:
marroring, which stores the same data on multiple drives; striping, which par-
titions data across different drives; and error correction (or fault tolerance),
which allows detecting (e.g. using CRC [PB61]) and possibly fixing (e.g. using
error-correcting codes [RS60]) problems related to data corruption and hard-
ware failures. These three concepts are used to build various RAID levels (e.g.
RAID-0 or RAID-6), including nested RAID configurations (e.g. RAID 0+1).
Depending on the used configuration, a RAID system can improve the storage
layer in areas of capacity, performance and reliability.

While RAID levels can significantly improve performance for both random
and sequential access scenarios, using them often requires careful tuning, and
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can have some detrimental effects. Typically, the data is spread between disk
not on a single-byte basis, but using larger blocks, e.g. 64KB in size. As a result,
using I/O units of sizes smaller than the block size, involves just a single disk,
and only with larger I/O units multiple disks are used, resulting in an improved
bandwidth, as seen in Figure 2.9] for RAID systems. This figure also shows
that the I/0 size at which the random-IO performance approaches that of the
sequential access is larger for the RAID systems. This is caused by the fact that
in RAID systems multiple disks are used to serve an I/O request, resulting in
a per-disk bandwidth being only a fraction of the original size, reducing the
benefit of large I/Os. In such situations, to improve the sequential performance,
the I/O unit size needs to be scaled proportionally to the number of used disks,
quickly reaching tens of megabytes, as shown in Figure 2.9} With such transfer
sizes, the memory consumption of the I/O layer can be very high, especially
when multiple large requests are served at the same time.

2.3.3 Flash storage

The most visible alternative to magnetic disks are NAND flash memories [MA95,
GT05], currently the storage medium of choice in small, portable computers and
multimedia devices. In this solution, multiple flash chips are combined into a sin-
gle device, typically visible to the system as a regular drive, as presented in the
right-most side of Figure 2.7} Current generations of flash drives excel over tra-
ditional disks in sequential access, random-read performance [LMO7, [SHWGO0S],
power consumption and failure rates, as demonstrated in Table Flash mem-
ories are less attractive in the price/capacity dimension, as their per-byte price is
significantly higher. To overcome this difference, flash memories are also applied
in hybrid drives — traditional magnetic drives with an integrated flash-drive, used
to store most frequently accessed data.

One particularly interesting aspect of NAND devices is that in any given
area on the flash memory all the bits are by default set to 1. Clearing a bit
to 0 is a relatively fast process. However, to set a 1 bit again, the entire area
needs to be erased to its previous state, making this process expensive. To
optimize performance for this behavior, a set of algorithms similar to those
used previously for write-only storage has been proposed (see Section .
However, currently available flash drive interfaces typically imitate standard
disks, not exposing the low-level functionality of setting particular bits and
explicit erasing. As a result, any write to a flash device typically causes an erase
operation, resulting in a significant difference between the random read and
random write performance, as presented in Table
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NATA | USB IDE FC

Disk | Flash | Flash | Flash

GB 500 4 32 146
$/GB 0.20 5.00 | 15.62 -
Watts (W) 13 0.5 0.5 8.4
seq. read (MB/s) 60 26 28 92
seq. write (MB/s) 55 20 24 108
rnd. read (I0/s) 120 | 1,500 | 2,500 | 54,000
rnd. write (I0/s) 120 40 20 | 15,000
10/s/$ 1.2 75 5 -
10/s/W 9.2 | 3,000 | 5,000 | 6,430

Table 2.4: Disk and Flash characteristics (from [SHWGOS]))

2.3.4 Future trends

Current developments in magnetic hard-drive technology follow the trends ob-
served over the last decades: capacity and bandwidth increase at a rapid pace,
while latency improves very little. This tendency will most likely continue, since
the first two parameters are related to density of data on disk platters, while
the third one depends on mechanical factors — head seek time and platter ro-
tation speed — which are much harder to improve. In this situation, flash-based
devices, with their rapidly improving performance parameters and, at the same
time, rapidly decreasing prices, are quickly becoming a feasible storage solution
for a large class of applications.

Another possible direction are micro-electro-mechanical store (MEMS) de-
vices [Sch04]. In these devices, data is organized on a rectangular surface, and
accessed by thousands of heads. Comparing to traditional magnetic disks, these
devices provide a few-times improvement in terms of sequential access and ca.
10 times improvement in random-access [Ail05]. Additionally, the large available
number of heads allows for performance improvements impossible for standard
disks [SSAGO3]|. First, heads not used by the priority tasks can be exploited to
provide data for background processes. Secondly, fine-grained data organization
allows both row-order and column-order data access for two-dimensional data
structures.
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2.4 Conclusions

This chapter provided the overview of the most important aspects of modern
hardware, concentrating on three areas: processor architecture, memory system
and disk technology. Advances in the processor architecture resulted in highly
efficient chips, but programs need to be carefully designed to fully exploit the
new features (multiple execution units, SIMD) that deliver this performance.
On the memory level, a hierarchy of CPU caches forces developers to re-design
their in-memory data storage strategies. Finally, on disk level, the increasing
imbalance between latency and bandwidth requires applications to operate with
large I/O units, with sequential scans becoming a preferable access method.
These features of modern hardware have direct impact on the research described
in the remainder of this thesis.
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Chapter 3

Databases on modern
hardware

Database management systems (DBMSs) provide application developers with a
high-level abstraction of data management tasks. They expose generic interfaces
that allow accessing and manipulating data, while at the same time providing
features like concurrency control, transaction management, failure recovery and
consistency checks. Additionally, they hide the hardware details of a used ma-
chine, helping applications to run on various platforms.

This chapter discusses the major characteristics of a DBMS, focusing on
elements crucial for this thesis. In Section [3:1} we briefly describe the relational
data model and relational algebra that are the fundamentals of most existing
database engines. Section [3.2] describes the typical architecture of a DBMS,
shortly discussing the most important components. Two of these components —
the query executor and the storage manager — are of most interest for this thesis,
and in this chapter we present different approaches of implementing them, both
significantly influencing the research presented in the following chapters of this
thesis. First, Section [3.3] discusses the most commonly used implementation
approach, based on an iterator execution model working on top of an N-ary
storage model. Then, Section [3.4] presents a completely different approach, found
in the already existing MonetDB system, which is using a fully-materialized
algebra based on the decomposed (column) storage model. Both architectures,
while having benefits in some areas over the other one, do not make a full use
of the possibilities of modern computer hardware. To improve this situation,

35
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multiple optimization techniques have been proposed, as presented in Section 3.5

3.1 Relational model

Since late 1970s, the relational model is the most popular model in database
systems. In this model, the data is stored as a set of N-ary relations, where each
relation is a subset of a Cartesian product of N domains. A relation consists
of a set of tuples, each containing N attribute values, one for each attribute.
Typically, relations are visually represented as tables, where tuples are rows and
attributes are columns, as presented in the left-most side of Figure 31} Still,
the model itself does not impose any particular physical data representation. In
particular, the relations by definition are unordered.

The operations on relations are defined in relational algebra, consisting of
a number of operators. The basic operators include projection (w), selection
(o), aggregation (G), Cartesian product (x) and various types of join (X). For
example, using relation People from Figure to compute the age-bonus for
all people older than 30, one could use the following relational query:

TId,Name,Age,Bonus=(Age—30)x50 (UAge>30 (People)) (31)

Similarly as its underlying model, the algebra does not discuss how partic-
ular operations should be performed, but only what is the outcome of a given
operator.

While the relational model is the most popular approach in the database
world, other solutions exist. For example, object-oriented [Bar96], hierarchi-
cal [BIa98] or semi-structured [BGvK™06| databases are all being used in special-
ized data management tasks. In this thesis we focus on the relational databases
and query processing in these systems, but some of the techniques can be applied
within other paradigms.

3.1.1 Relational model implementation

When proposed, the relational model was an abstract mathematical concept,
without an existing physical implementation. In the second part of 1970s and
early 1980s, real-world realizations of this idea have been implemented, e.g.
System R |[CAB™81] and Ingres [SHWKT6]. These systems introduced multiple
concepts and designs that often can still be found in the existing relational
databases.
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Relation NSM representation DSM representation
Id ‘ Name ‘ Age Page 1 'd Name Age
101 Alice 22 101 1 Alice ' 22 | 102 101 Alice 22
102 van 37 van ' 37 | 104 'Peggy 102 Ivan 37
104 Peggy 45 45 [ 105 1 victor 104 Peggy 45
105 | Victor 25 25 [ 108 Eve ! 10 105 Victor 25
108 Eve 19 Page 2 108 Eve 19
109 Walter 31 109 ' Walter ' 31 | 112 109 Walter 31
112 | Trudy 27 Trudy ' 27 | 113 ' Bob 112 Trudy 27
113 Bob 29 " 29 [114 7 zoe 113 Bob 29
114 Zoe 42 42 | 115 ' Chatie ' 35 114 Zoe 42
115 Charlie 35 115 Charlie 35

Figure 3.1: Relational table and its representation in the N-ary storage model
(NSM) and the decomposed storage model (DSM)

3.1.1.1 Physical relation representation

The most common data representation in relational databases is to keep a re-
lation as a collection of rows, each corresponding to a tuple. These rows are
typically stored as records one after another in one table per relation, consisting
of disk pages, each storing multiple records. This representation, known as the
N-ary storage model (NSM), is presented in the central part of Figure An
alternative representation is the decomposed storage model (DSM [CKS85|) pre-
sented in the right-most part of Figure [3.1] Here, every attribute is stored as a
separate area on disk.

3.1.1.2 Query execution plans

To provide the functionality of the relational algebra in a physical world, data-
bases commonly include a set of physical operators, roughly corresponding with
their logical counterparts. Typically, it is not a one-to-one mapping, as the same
logical operator can be implemented in various ways. For example, a logical join
operator can be executed with a merge-join or a hash-join, depending on data
properties, available resources etc. Various operators are combined into a query
ezxecution plan — a physical representation of a user query. A good overview of the
implementation techniques for the physical query plans is presented in [Gra93).

Within a query plan, typically two execution methods are used [SKS02|
Chapter 13.7]: pipelining and materialization. These two approaches are dis-
cussed in more detail in Sections [B.3] and 3.4
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SELECT 1_returnflag,
1_linestatus,
sum(1l_quantity) AS sum_qty,
sum(1l_extendedprice) AS sum_base_price,
sum(1l_extendedprice * (1 - 1l_discount)) AS sum_disc_price,
sum(1l_extendedprice * (1 - 1_discount) * (1 + 1l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(1l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count (x) AS count_order
FROM lineitem
WHERE 1_shipdate <= date ’1998-09-02’
GROUP BY 1_returnflag,
1_linestatus
ORDER BY 1_returnflag,
1_linestatus;

Figure 3.2: TPC-H Query 1

3.1.1.3 Query language

DBMSs typically hide the imperative nature of the relational algebra by pro-
viding some high-level language that is converted into the actual query plan.
The de-facto standard for the relational databases is Structured Query Language
(SQL) [CB74, [EKM™04] that expresses the queries in a declarative syntax close
to the natural English language. For example, the relational query from Sec-
tion [B.I] can be expressed with this SQL statement:

SELECT Id, Name, Age, (Age - 30) * 50 AS Bonus
FROM  People
WHERE Age > 30

Figure [3.2] presents a more complicated SQL example: Query 1 from the
TPC-H benchmark that is often used as an example throughout this thesis.

3.2 DBMS architecture

The components of a typical relational DBMS are presented in Figure
In fact, the architectures of state-of-the-art DBMS products are significantly
more complex and often include dozens of cooperating modules. Still, generally,
database consists of the following components:
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Figure 3.3: A simplified architecture
of a DBMS

Figure 3.4: An operator tree for a
simple SQL query in a tuple-at-a-
time execution model

client application —before a query enters a DBMS, it needs to be provided by

a client. A query is typically expressed in a high-level query language, e.g.
SQL. A client can connect to a DBMS directly, using some DBMS-specific
low-level communication protocols, or by exploiting a general-purpose
high-level connection infrastructure, such as ODBC [Mic|] or JDBC [Sunal.
Furthermore, additional components can be used between the actual appli-
cation and the DBMS, for example specialized utilities for load balancing
or query result caching.

query parser — the syntax of the client query is analyzed, and a parse tree is

built, providing internal representation of a query.

query rewriter — this component checks the parse tree for its semantic cor-

rectness (e.g. existence of used table names or proper access rights) and
converts it into some normalized form. It is typically a tree of logical op-
erations, often close to the relational algebra. This module may perform
some additional tasks, for example expansion of user-defined views into
the underlying queries.

query optimizer — the major task of this component is to rearrange the query

tree in such a way that the expected execution time of the result query is
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minimal. It also prepares the physical query plan, with the logical opera-
tions (e.g. a generic join) replaced with their physical counterparts (e.g. a
hash-join). This module is usually highly complex, and has a tremendous
impact on the total query execution time. For example, a wrong order of
operations or a bad choice of an operator can result in a computational
blow-up at some stage of processing. For such a bad plan, even the fastest
query executor cannot process a given plan in satisfying time.

query executor — is the core component of query processing. It accepts a
physical query plan, and performs all specified processing steps on data
that it receives from the storage layer. The computed results are returned
to the client.

buffer manager / storage — takes care of storing data on persistent media,
accessing it and buffering it in memory. Typically, it also takes care of
handling updates, managing transactions, performing disaster recovery,
logging, locking, and more. However, these issues are not the focus of this
thesis, and we only concentrate on data storage and access.

Of these components, two are of most importance for this thesis: query ex-
ecutor and storage layer. In the next two sections we discuss two approaches
of implementing the query execution layer, based on two different principles:
pipelining and materializing [SKS02, Chapter 13.7]. First, in Section we an-
alyze a typical query processor using a pipelined iterator interface and working
on top of the N-ary tuple storage. Then, in Section we discuss the archi-
tecture of MonetDB, concentrating on its fully-materialized in-memory query
execution model and the use of column-based storage.

3.3 Tuple-at-a-time iterator model

Most database engines internally use the iterator model for their query exe-
cution layers [Gra94]. In this model, a query plan consists of a set of relational
operators, connected in some topology. Typically, it is a tree, but operators can
also compose a direct acyclic graph (e.g. in parallel execution plans) or even
a graph with cycles [Waa02]. Operators communicate in a “pipeline” manner
following the interface based on three major functions: open() initializes the op-
erator and its children, next() makes operator return the next part of data to the
caller, and finally close() finishes processing and frees the resources. Typically,
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in the next() call, a single tuple is returned, using the NSM-based records. This
“pull-based” model is known as tuple-at-a-time iterator model.

Figure [3:4] presents an example of an operator tree for the query from Sec-
tion The query execution proceeds as follows. First, the user (client applica-
tion etc.) asks the top operator (Project) for the next result tuple. Project asks
its child (Select) and it in turns asks its child (Scan). Scan retrieves the next
tuple from the table, and sends it back to Select. Select checks if the tuple passes
its predicate and, if so, sends it back to Project. If not, it asks Scan for the next
tuple. Project, for each input tuple, computes an additional column and returns
a new tuple to the user. When Scan determines that there are no more tuples
in the underlying relation, it sends the end-of-stream identifier throughout the
pipeline, which finishes the processing.

To better demonstrate what is happening within an operator, this is a pseu-
docode for the next() function in the Select operator:

Tuple Select::next() {
while (true) {
Tuple candidate = child->next();
if (candidate == EndOfStream)
return EndOfStream;
if (condition->check(candidate))
return candidate;

3.3.1 Tuple-at-a-time model performance characteristics

The tuple-at-a-time approach is elegant, simple to understand, and relatively
easy to implement. Performance-wise the most important characteristics of this
model is that for every tuple there are multiple function calls performed. In our
example, these include at least multiple next() calls, and calls to evaluate the
condition in Select as well as to compute a new attribute value in Project. As
a result, the state of each operator, as well as the code used by it, are accessed
frequently. These properties result in a set of important performance drawbacks
in a number of areas:

CPU instruction cache —if the query plan consists of many different types of
operators, their combined instruction-memory footprint can be too large
for the CPU I-cache to hold. Since the CPU changes its context between
operators every tuple, if the I-cache is not large enough, cache-misses might
occur every time a given part of code is accessed.
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plan-data cache — each instance of a relational operator consumes some mem-
ory to keep its state, necessary for executing the nezt() call. With complex
plans (even consisting of very few types of operators), or operators with
large state, this data might not fit in the CPU D-cache, resulting in cache-
misses.

function call overhead — the communication between operators, as well as
many data operations are performed by calling appropriate functions or
object methods. Per each operator iteration, multiple such calls are per-
formed. Since a cost of performing a function call, in particular to a
dynamically-dispatched (e.g. data-dependent) function, can be in range
of tens of CPU cycles, especially when multiple parameters are passed,
this overhead can be significant.

tuple manipulation — since tuples are organized as records of attributes, get-
ting a particular value often requires extra steps to determine its position
in the record. This record navigation is often repeated for each tuple.

superscalar CPUs utilization — as discussed in Section modern CPUs
have multiple execution units that allow performing multiple operations
at the same time. Database engines, performing the same operations for a
large number of tuples, seem naturally suited to exploit this feature. Un-
fortunately, with the tuple-at-a-time approach in each function call only
a single operation on a single tuple is performed, not exposing enough
work to keep multiple execution units busy. Also, heavy branching and
multiple function cause frequent stalls in the pipeline. As a result, typi-
cal database code achieves very low instructions-per-cycle (IPC) perfor-
mance [ADHW99].

compiler optimizations — many compile-time optimizations are impossible
with the interpreted tuple-at-a-time approach. For example, due to the
dynamic method dispatching, function inlining cannot be applied. Also,
processing a single value at a time does not allow application of many
performance-critical loop optimizations including loop unrolling, loop pipe-
lining, strength-reduction and automatic SIMDization.

data volume — the commonly used N-ary tuple representation requires all ta-
ble attributes to be stored in memory and transferred from disk. This
might result in a waste of both memory and disk bandwidth, as well as
the CPU cache, if a query does not use all attributes. Additionally, records
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cumm. | excl. calls avg. avg. | function
time | time instr. IPC | name
(sec) | (sec) / call
11.9 11.9 846 M 6 0.64 | ut_fold_ulint_pair
20.4 8.5 | 0.15M 27K 0.71 | ut_fold_binary
26.2 5.8 7TM 37 0.85 | memcpy
29.3 3.1 23M 64 | 0.88 | Item_sum_sum::update_field
32.3 3.0 6M 247 0.83 | row_search_for_mysql
35.2 2.9 17™M 79 | 0.70 | Item_sum_avg::update_field
37.8 2.6 108M 11 0.60 | rec_get_bit_field_1
40.3 2.5 6M 213 0.61 | row_sel_store_mysql.rec
42.7 2.4 48M 25 0.52 | rec_get_nth_field
45.1 2.4 60 19M 0.69 | ha_print_info
47.5 2.4 5.9M 195 1.08 | end_update
49.6 2.1 11M 89 0.98 | field_conv
51.6 2.0 5.9M 16 0.77 | Field_float::val_real
53.4 1.8 5.9M 14 1.07 | Item-field::val
54.9 1.5 42M 17 0.51 | row_sel_field_store_in_mysql..
56.3 1.4 36M 18 0.76 | buf_frame_align
57.6 1.3 17™M 38 | 0.80 | Item_func_mul::val
59.0 1.4 25M 25 0.62 | pthread-mutex_unlock
60.2 1.2 206M 2 0.75 | hash_get_nth_cell
61.4 1.2 25M 21 0.65 | mutex_test_and_set
62.4 1.0 102M 4 0.62 | rec_get_lbyte_offs_flag
63.4 1.0 53M 9 0.58 | rec-1_get_field_start_offs
64.3 0.9 42M 11 0.65 | rec_get_nth_field_extern_bit
65.3 1.0 11M 38 | 0.80 | Item_func_minus::val
65.8 0.5 | 5.9M 38 | 0.80 | Item_func_plus::val

Table 3.1: MySQL gprof trace of TPC-H Q1: +,-,%,SUM,AVG takes <10%, low
IPC of 0.7 (from [BZNO5])

representing tuples typically include some meta-data, leading to subopti-
mal disk usage.

The above properties of the iterator model lead to two major inefficiencies in
the traditional database performance. We demonstrate them with an experiment
in which TPC-H Query 1 is executed on MySQL. This query scans a single rela-
tion consisting of a large number of tuples, performs some simple computations,
and finally generates a few aggregate values. The query plan is very simple, and
does not include any sophisticated operators such as joins or disk-spilling aggre-
gations. In this situation, one could expect that most of the processing time is
spent in data-manipulating functions. Table [3.I] presenting a detailed profiling
of the benchmark, shows otherwise. Functions performing the actual operations
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on data (in bold) consume less than 10% of total time. This demonstrates the
first inefficiency — there is a lot of instructions related to query interpretation
and tuple manipulation, causing a high instructions-per-tuple ratio. Addition-
ally, the instructions-per-cycle factor is significantly lower than achievable on
super-scalar processors. This is caused by the inability of the tuple-at-a-time
algorithms to exploit multiple processing units, SIMD instructions and many of
the crucial compiler optimizations. These two inefliciencies combined result in
a very high cycles-per-tuple ratio which, even for simple operations, can reach
hundreds or thousands of CPU cycles.

The tuple-at-a-time model also brings challenges in the areas of program
profiling and optimization. This is caused by the fact that most of the CPU
time is spread over a relatively large volume of code, including data processing
functions, operator methods, tuple navigation etc. In this situation, it is hard to
identify performance bottlenecks and hence introduce significant performance
optimizations.

While the pipelined model often suffers in raw processing performance, it
has a major benefit over the materializing approach discussed in the following
section — scalability. Since in each next() call only a single tuple is passed, as long
as there are no large intermediate results inside the query plan, the pipelined
model can efficiently process arbitrarily large volumes of data. Maintaining this
property is one of the crucial design goals of the new iterator model presented

in Section .2

3.4 Column-at-a-time execution in MonetDB

The MonetDB system [Bon02] was designed specifically for analytical data
processing. In these scenarios, the query load typically consists of a relatively
small number of queries, but the queries are complex and process large amounts
of data. To achieve high performance in such scenarios, MonetDB proposed
alternative solutions in various layers of the database system.

The crucial difference between MonetDB and traditional systems is in the
way data is processed. Instead of using the N-ary tuple model, MonetDB follows
the ideas presented in the decomposition storage model (DSM) [CK85] and uses
an algebra entirely based on Binary Association Tables (BATs) [BK99]. This
influences the storage layer, query language and the execution layer implemen-
tation.

In the storage layer, BATSs are simply two-column tables, where head and tail
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sel_age
(oid)  (int)
1 37
2 45 ——— [-1(30)
people_id people_name people_age [select(SO.nil))—b 5 31 tmp
(void)  (int) (void) (str) (void)  (int) 8 42 (oid) y (int)
0 101 0 Alice 0 22 9 35 1 7
1 102 1 lvan 1 37 sel_id 2 15
2 | 104 2 Peggy 2 | 45 (oid) ~ (int) 5 1
3 | 105 3 Victor 3 | 25 | (mirorjoing }{ 1 | 102 8 | 12
4 108 4 Eve 4 19 2 104 9 5
5 109 5 Wallter 5 31 5 109
6 | 112 6 Trudy 6 | 27 8 | 114 [](50,)
7 113 7 Bob 7 29 9 115 sel bonus
8 | 114 8 Zoe 8 | 42 sel_name (0id) 4 (int)
9 115 9 Charlie 9 35 (oid) (str) 1 350
1 Ivan 2 750
2 Peggy 5 50
[ mirror.join() )—— 5 Walter 8 600
8 Zoe 9 250
9 Charlie

Figure 3.5: Execution of a simple SQL query (see Section [3.1.1.3) in the Mon-
etDB column-at-a-time execution model

columns can contain different data types, as presented in the left-most side of
Figure 35} A similar data organization has been proposed before in the context
of database machines, specifically for vector processors |[TKK™88|. Different
attributes of the same tuple in an N-ary table are connected by using the value
of object-id (0id) column, equivalent to the surrogate columns in [CK85]. For
persistent data, this column typically contains a continuously increasing dense
sequence of numbers, and is stored using a special virtual-oid (void) column
type [BK99] that is not physically materialized. As a result, a BAT is often
stored using a single column. For fixed-width data this format is equivalent to
a simple data array. For variable-width types the storage is separated into two
elements: a heap containing the actual data, and a fixed-width array of per-tuple
positions in the heap.

The column-based approach in the storage layer has a significant impact on
the I/O performance as well as the memory consumption. Since only columns
that are actually used by a given query are fetched from disk, the volume of the
transferred data becomes a fraction of what a system based on the N-ary storage
would use. This is especially important with tables having a large number of
columns, as is the case e.g. in data mining applications.
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In the processing layer, MonetDB implements its binary algebra using the
column-at-a-time approach: every operator is executed at once for all the tuples
in the input columns, and its output is fully materialized as a set of columns.
As a result, the query plan is not a pipeline of operators, but instead a series of
sequentially executing statements, consuming and producing columns of data.
For example, the execution of the example SQL query from Section [3.1.1.3 in
Monet Interpreter Language (MIL) [BK99], is as follows:

sel_age = people_age.select (30, nil);

sel_id = sel_age.mirror().join(people_age);
sel_name := sel_age.mirror().join(people_name);
tmp = [-1(sel_age, 30);

sel_bonus := [*](50, tmp);

The data flow for this query plan is presented in Figure The resulting sel_*
BATSs constitute the final result. A more complex MIL example is presented in
the left-most column of Figure [3.6] which shows the MIL code for the TPC-H
Query 1.

The implementation of MonetDB operators is based on a principle of no
degree of freedom. For every combination of task (e.g. select, sort), input data
types (e.g. integer, string) and properties (e.g. sorted, nullable) a single special-
ized routine is created. Note that this approach would not be feasible in the
N-ary model, as the number of possible combinations is too high, but it is main-
tainable in the binary model. When an operator is called, the version matching
the input data types and properties is chosen and executed. Since the operator
input is typically stored directly as arrays of values, and the entire input is
processed at once, many operations boil down to simple loops over arrays. For
example, a simplified code for a routine that selects from a [void,int] BAT
identifiers of tuples bigger than a given constant and produces an [oid,void]
result would look as follows:

int uselect_bt_void_int_bat_int_const(oid *output, int *input, int value, int size) {
oid i;
int j = 0;
for (i = 0; i < size; i++)
if (input[i] > value)
output [j++] = i;
return j;

Naturally, it is infeasible to manually implement and maintain all possible com-
binations of operators. MonetDB uses aggressive macro expansion using the Mx
tool [KSvdBB96] that converts operator templates into dozens or even hundreds
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MIL statement SF=1 SF=0.001
data result | time | band- time | band-
volume |  size (ms) | width || (usec)| width
(MB) | (tuples) (MB/s) (MB/s)
s0 := select(I_shipdate).mark 45 59M | 127 352 150 305
sl := join(s0,l_returnflag) 68 59M | 134 505 113 608
s2 := join(s0,l linestatus) 68 59M | 134 506 113 608
s3 := join(s0,l_extprice) 114 5.9M | 235 483 129 887
s4 := join(s0,l_discount) 114 59M | 233 488 130 881
s5 := join(s0,l_tax) 114 5.9M | 232 489 127 901
$6 := join(s0,l_quantity) 68 5.9M | 134 507 104 660
s7 := group(sl) 45 59M | 290 155 324 141
s8 := group(s7,s2) 45 59M | 329 136 368 124
s9 := unique(s8.mirror) 0 4 0 0 0 0
r0 := [+](1.0,s5) 91 | 5.9M | 206 440 60 | 1527
rl = [-](1.0,54) 91 | 5.9M | 210 432 51 | 1796
r2 := [*¥](s3,r1) 137 5.9M | 274 498 83 1655
r3 = [*](s12,10) 137 | 5.9M | 274 499 84 | 1653
r4 := {sum}(r3,s8,s9) 45 4 | 165 271 121 378
r5 := {sum}(r2,s8,s9) 45 4 | 165 271 125 366
r6 := {sum}(s3,s8,s9) 45 4 | 163 275 128 357
r7 := {sum}(s4,s8,s9) 45 4 | 163 275 128 357
r8 := {sum}(s6,s8,s9) 22 4 | 144 151 107 214
r9 := {count}(s7,s8,59) 22 4| 112 196 145 157
TOTAL / average: 1361 3724 365 || 2327 584
(MB) (ms) | (MB/s) || (usec) | (MB/s)

Figure 3.6: MIL code and performance profile of the TPC-H Query 1 (see Fig-
ure running on MonetDB, scale factors 1 and 0.001 (from [BZNO05])

of versions differing with input data types, properties etc. While this approach
significantly increases the program size, it has highly useful properties influenc-
ing the execution performance:

instruction cache — Even though the overall code size is large, the cost of
loading a given function is amortized over the entire input of an operator,
making it negligible in most cases.

plan-data cache — Since only one operator is executed at any given time
(within a single process), its state can make full use of the CPU cache.
MonetDB was a platform used for some pioneering work in the area of
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cache-conscious databases, and provides a number of cache-conscious al-
gorithms [MBKO02, MBNKO04].

function call overhead — For most operators, there are no per-tuple function
calls happening, making the function call overhead negligible.

tuple manipulation — The data is typically stored as contiguous set of tuples,
equivalent to e.g. C arrays. As a result, value access is direct, and does
not require any interpretation.

superscalar CPUs utilization — The code inside the MonetDB operators
usually has no function calls, has significantly fewer branches, and as a
result works much better on modern CPUs. However, expensive main
memory accesses often hinder the performance.

compiler optimizations — MonetDB operators code is simple, and many au-
tomatic compiler optimization techniques can be applied.

data volume — Since MonetDB uses columnar data representation, only the
used columns are being transferred from disk and stored in memory. Ad-
ditionally, since data is packed in dense arrays, the overhead of record
structure present in NSM is avoided, resulting in smaller storage require-
ments.

Thanks to the above properties, the MonetDB execution model reduces the
need of the expensive query plan interpretation and makes the CPU spend most
of the time on the actual data processing. With the CPU-efficient operator code,
this allows to achieve low cycles-per-tuple cost for large-volume data processing.

The materializing operator model has also benefits in the area of extensibil-
ity, profiling and query optimization. Since operators are fully independent, and
internally typically perform simple array-processing tasks, new operators can
be easily added. Also, query execution time is clearly divided into a sequence of
consecutively executing steps. This allows easy profiling and determining pos-
sible optimization areas. Finally, before executing each operator, there is more
information available than in the tuple-at-a-time model (e.g. the exact relation
cardinality), exposing multiple runtime optimization opportunities.

While MonetDB in many areas demonstrates a significant performance im-
provement over the traditional tuple-at-a-time strategy, it also suffers from a
number of problems. The most important one is related to the intermediate re-
sult materialization. Even during in-memory processing, writing the results by
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each operator can cause high memory traffic, making the operators not CPU-
bound, but memory-bound. This can be observed e.g. by comparing the TPC-H
Query 1 results for scale factors 1 (1GB) and 0.001 (1MB) presented in Fig-
ure L. For SF=0.001 the data is small enough to fit the intermediate results
in the CPU cache, and as a result, the per-operator bandwidth can be even
3 times higher than the memory-bound SF=1 case, and the overall execution
is almost two times faster (2327 usec on a 1MB dataset versus 3724 ms on a
1GB dataset). The impact of the result materialization is even more visible on
multi-CPU machines, where the memory bandwidth is shared among different
CPUs [Zuk02]. Avoiding this problem is one of the crucial goals of the execution
model introduced in Section

The overhead of the intermediate result materialization is additionally in-
creased in MonetDB by its use of a column-at-a-time algebra. With this ap-
proach, tasks involving multiple columns often become complicated. For ex-
ample, an aggregation with multi-attribute keys needs to be decomposed into
a number of steps. Similar problems occur in multi-attribute joins or sorting.
Binary algebra also enforces attribute post-projection [MBNEKO04|] — after an op-
eration, all attributes “carried” through it need to be materialized, as is the
case with the id and name columns in Figure 3.5 In all these cases, additional
computational steps causes extra data materialization. These MonetDB prob-
lems suggest that, while the columnar storage is good for reducing the I/O cost
and for allowing high processing performance, query plans should be expressed
using the N-ary approach.

3.4.1 Breaking the column-at-a-time model

The high memory-bandwidth problem of MonetDB has been analyzed in [Zuk02)
that focused on the in-memory execution on SMP machines. In such scenarios,
the computational benefits of parallelizing queries are often seriously hindered
by the relatively poor per-CPU memory bandwidth. In contrast, since cache
memories are often dedicated to each CPU, the cost of accessing cache (assuming
no cache coherency protocol overheads) does not increase with multiple CPUs.

The imbalance between the main-memory and CPU-cache bandwidth, es-
pecially visible in the multi-CPU environments, has led to the idea of parti-
tioned execution [Zuk02, Section 4.3.3]. Here, instead of executing a sequence
of column-at-a-time statements, columns are broken into smaller slices, and the
operators execute on them in the pipelined fashion. With the slice size chosen

12005 results from [BZNO5|
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such that the intermediate results fit in the CPU cache, in-memory material-
ization is avoided. As a result, performance is significantly improved, especially
during parallel execution. In single-CPU execution, the performance benefits
were relatively small, mostly due to the fact that the interpretation mechanisms
were implemented in the MIL language, which is relatively inefficient for script-
ing. With the slice size typically in range of a few hundreds or a few thousands
of tuples, the high overhead of MIL interpretation could not be well amortized.

While the performance improvement of partitioned execution was relatively
limited, this research has hinted that combining the high performance of column-
at-a-time operations with the pipelined execution strategy can both improve the
already high performance of MonetDB, as well as allow it to reduce its memory-
consumption related problems. This gave a motivation for the research presented
in the following chapters of this thesis.

3.5 Architecture-conscious database research

In the previous sections we have discussed two existing execution models
that are the base for the research presented in this thesis. This section broadens
the picture by presenting the research from the area of architecture-conscious
database systems. In this field, the performance of database systems on modern
hardware is analyzed and improved, both in terms of the modifications to the
discussed execution models, as well as new implementations of various data
processing tasks.

3.5.1 Analyzing database performance on modern hard-
ware

The detailed analysis of CPU performance on database workloads was first
performed by the computer-architecture community [MDO94, [CB94] BGB9S,
LBE™98, IKPH™98|. In [MDO94] authors compared a few types of multi-user
commercial workloads, including TPC-A [Tra94] and TPC-C [Tra07] bench-
marks, simulating OLTP scenarios, with a set of numeric-intensive applications,
mostly from the area of scientific computing. One of the observations was that
the transaction-processing systems typically use significantly larger instruction
footprint, with most instructions executing a relatively small number of times.
This is related to the fact that these systems typically do not spend a lot of time
in tight loops, as is the case in e.g. numeric processing. This directly impacts the
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L1 I-cache performance — the percentage of I-cache misses for TPC-A is a few
times higher than for scientific applications. Interestingly, for the L1 D-cache,
the results were opposite — multi-user applications suffered from a significantly
lower number of misses. For the L2 misses, the situation is slightly different —
transaction workloads not only suffer from significant number of I-cache misses,
but also D-cache misses are on a par with numeric workloads. Finally, it has
been observed that the multi-user workloads, due to their event-based nature,
spend a significant amount of time in the kernel space — 40% for TPC-A versus
7% for used non-database workload.

Similar experiments have been presented in [CB94], where the authors addi-
tionally analyze the performance of the sort operation, and provide more insight
into the exploitation of the superscalar nature of the Alpha AXP CPUs. This pa-
per demonstrates that already in 1994 transaction-processing workloads resulted
in significantly higher cycles-per-instruction (CPI), and made inefficient use of
the multi-pipeline architecture of the CPUs. Also, the impact of branch mis-
predictions has been demonstrated to be higher than in most numeric-intensive
problems. As a result, it has been shown that transaction-processing programs
can spend as little as 20% on actual computation, wasting rest of the time on
various stalls, comparing to 30% in sort, and 80% in the Linpack benchmark.
These problems have also been identified in [KPH™98]|, where authors confirm
OLTP problems with utilizing out-of-order execution, superscalar issues and
branch prediction.

A comparable analysis of the OLTP and decision-support systems (DSS)
workloads has been presented in [BGB9S, [LBET98, [ADHW99]. In [BGB9§], the
authors demonstrate that the CPI of DSS scenarios is significantly better (factor
4) than in OLTP. Also, DSS systems have better code and data locality, result-
ing in significantly fewer cache misses. These results are confirmed in [LBET98|,
where authors present higher OLTP instructions footprint, and hence an in-
creased number of I-cache misses. Similar conclusions are drawn in [ADHW99],
where the authors identify L2 data-cache misses and L1 instruction-cache misses
as crucial for performance.

Interestingly, recent analysis of the large-scale OLTP experiments [SKO0G]
presents slightly different conclusions. On the Itanium platform, with the used
transaction load, the instruction-cache stalls only contributed to less than 10%
of the total time. On the other hand, data-cache misses, particularly expen-
sive L3 misses, consumed ca.60% of total time. These results show that the
exact characteristics of the performance highly depends on the used hardware
platform, system architecture and query loads.

While this collection of papers is not exhaustive, it demonstrates that the
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performance of database systems is far from optimal on modern hardware, es-
pecially comparing to numeric-intensive scientific programs. As a result, there is
an ongoing activity in the database research community to improve the database
architecture by addressing the most important performance problems.

3.5.2 Improving data-cache

Perhaps the most visible inefliciency of classical database algorithms is re-
lated to the suboptimal use of the hierarchical memory systems. The impact
of the non-uniform access cost has been identified quite early with a pioneering
work of Shatdal et al [SKN94]. While in 1994 the difference