
Balancing
Vectorized Query Execution

with
Bandwidth-Optimized Storage

Marcin Żukowski

Balancing
Vectorized Query Execution

with
Bandwidth-Optimized Storage

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op vrijdag 11 september 2009, te 10:00 uur

door

Marcin Żukowski
geboren te Białystok, Polen

Promotiecommissie:

Promotor: prof. dr. M.L. Kersten
Copromotor: dr. P.A. Boncz

Overige leden: dr. G. Graefe
prof. dr. A. Ailamaki
prof. dr. ir. A.W.M. Smeulders
prof. dr. C.R. Jesshope

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis was carried out at CWI, the Dutch na-
tional research centre for mathematics and computer science, within the theme
Database Architectures and Information Access, a subdivision of the research
cluster Information Systems.

The research reported in this thesis was partially carried out and is being con-
tinued at VectorWise B.V., a CWI spin-off company.

SIKS Dissertation Series No. 2009-30
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

The research reported in this thesis was partially funded by the MultimediaN
N3 project.

Cover design: Bartek Wąsiel, Fabryka BeWu, Poznań, Poland

ISBN: 978-90-9024564-5

Wszystkim moim nauczycielom,
zwłaszcza tym pierwszym i najlepszym –

Rodzicom

To all my teachers,
especially the very first and the best ones –

My Parents

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Research direction . 3
1.3 Research questions . 4
1.4 Research results and thesis outline 5

2 Computer hardware evolution 7
2.1 Modern CPU architecture . 8

2.1.1 Basic CPU computing model 8
2.1.2 Pipelined execution . 12
2.1.3 SIMD instructions . 13
2.1.4 Superscalar execution . 13
2.1.5 Hazards . 14

2.1.5.1 Data hazards . 14
2.1.5.2 Control hazards 15
2.1.5.3 Structure hazards 18

2.1.6 Deepening the pipeline . 18
2.1.7 Development trends and future architectures 19

2.1.7.1 Simultaneous multithreading 19
2.1.7.2 Chip multiprocessors 19
2.1.7.3 Heterogeneous computation platforms 20

2.2 Memory system . 21
2.2.1 Hierarchical memory system 22
2.2.2 Cache memory organization 23
2.2.3 Cache memory operation and control 24
2.2.4 Virtual memory . 25
2.2.5 Future trends . 26

i

ii CONTENTS

2.3 Hard-disk storage . 27
2.3.1 Disk performance improvements 29
2.3.2 RAID systems . 30
2.3.3 Flash storage . 31
2.3.4 Future trends . 32

2.4 Conclusions . 33

3 Databases on modern hardware 35
3.1 Relational model . 36

3.1.1 Relational model implementation 36
3.1.1.1 Physical relation representation 37
3.1.1.2 Query execution plans 37
3.1.1.3 Query language 38

3.2 DBMS architecture . 38
3.3 Tuple-at-a-time iterator model 40

3.3.1 Tuple-at-a-time model performance characteristics 41
3.4 Column-at-a-time execution in MonetDB 44

3.4.1 Breaking the column-at-a-time model 49
3.5 Architecture-conscious database research 50

3.5.1 Analyzing database performance on modern hardware . . 50
3.5.2 Improving data-cache . 52
3.5.3 Improving instruction-cache 54
3.5.4 Exploiting superscalar CPUs 55
3.5.5 Intra-CPU parallelism . 56
3.5.6 Alternative hardware platforms 57
3.5.7 Analyzing and improving database I/O performance . . . 58

3.6 Conclusions . 60

4 MonetDB/X100 overview 61
4.1 MonetDB/X100 architecture . 62

4.1.1 Query language . 64
4.2 Vectorized in-cache execution model 66

4.2.1 Vectorized iterator model 66
4.2.1.1 Vectors . 66
4.2.1.2 Operators . 68
4.2.1.3 Primitives . 69

4.2.2 In-cache execution . 71
4.2.2.1 Cache interference 73
4.2.2.2 Vector size and allocation 74

CONTENTS iii

4.2.3 Execution layer performance 75
4.3 Bandwidth-optimized storage . 77

4.3.1 Scan-based processing . 78
4.3.2 ColumnBM storage format 80
4.3.3 Index structures . 81
4.3.4 Updates . 82

4.3.4.1 Delta-based updates 82
4.3.4.2 Positional delta trees 83

4.4 Conclusions . 84

5 Vectorized execution model 85
5.1 Properties of the vectorized execution model 85

5.1.1 Interpretation overhead 86
5.1.2 Instruction cache . 87
5.1.3 Processing unit size . 88
5.1.4 Code efficiency . 89
5.1.5 Block algorithms . 90
5.1.6 Scalability . 91
5.1.7 Query plan complexity and optimization 91
5.1.8 Implementation complexity 92
5.1.9 Profiling and performance optimization 92
5.1.10 Comparison summary . 93

5.2 Implementing the vectorized model 94
5.2.1 Efficient implementation requirements 94

5.2.1.1 Bulk processing 94
5.2.1.2 Data location and organization 94
5.2.1.3 Compiler optimization amenability 95
5.2.1.4 Conclusion . 96

5.2.2 Choosing the data organization models 96
5.2.2.1 Block-data representation models 97
5.2.2.2 NSM and DSM in-memory performance 99
5.2.2.3 Choosing the data model 101

5.2.3 Decomposing data processing 102
5.2.3.1 Multiple-attribute processing 102
5.2.3.2 Phase separation 103
5.2.3.3 Branch separation 103

5.2.4 Primitive implementation 105
5.2.4.1 Primitive development and management 105
5.2.4.2 Control dependencies 106

iv CONTENTS

5.2.4.3 Data dependencies 106
5.2.4.4 SIMDization . 108

5.3 Case study: Hash-Join . 109
5.3.1 Problem definition . 109
5.3.2 Standard implementation 109
5.3.3 Vectorized implementation 111

5.3.3.1 Build phase . 111
5.3.3.2 Probe phase . 112
5.3.3.3 Performance . 113

5.4 Optimizing Hash-Join . 114
5.4.1 Best-Effort Partitioning 115
5.4.2 Partitioning and cache associativity 116
5.4.3 BEP performance . 118
5.4.4 BEP discussion . 123

5.5 Extending the vectorized world 124
5.5.1 Overflow checking . 124
5.5.2 NULL handling . 125
5.5.3 String processing . 126
5.5.4 Binary search . 128

5.6 Conclusions . 132

6 Light-weight data compression 133
6.1 Related work . 135
6.2 Super-scalar compression . 138

6.2.1 Design guidelines . 139
6.2.2 PFOR, PFOR-DELTA and PDICT 140
6.2.3 Disk storage . 141
6.2.4 Decompression . 141
6.2.5 Compression . 145
6.2.6 Fine-grained access . 147
6.2.7 Compulsory exceptions 148
6.2.8 RAM-RAM vs. RAM-cache decompression 149
6.2.9 Improving memory bandwidth on multi-core CPUs 150
6.2.10 Choosing compression schemes 152

6.3 TPC-H experiments . 154
6.4 Inverted file compression . 157
6.5 Conclusions and future work . 158

CONTENTS v

7 Cooperative scans 159
7.1 Traditional scan processing . 161
7.2 Cooperative Scans . 163
7.3 Row-wise experiments . 167

7.3.1 Comparing scheduling policies 168
7.3.2 Exploring many different query mixes 171
7.3.3 Scaling the data volume 174
7.3.4 Many concurrent queries 174
7.3.5 Scheduling-cost scalability 175

7.4 Improving DSM scans . 176
7.4.1 DSM challenges . 176
7.4.2 Cooperative Scans in DSM 179
7.4.3 DSM results . 181

7.4.3.1 Overlap-ratio experiments 182
7.5 Cooperative Scans in a RDBMS 183

7.5.1 ABM implementation . 183
7.5.2 Order-aware operators . 184

7.6 Related work . 186
7.7 Conclusions and future work . 188

8 Conclusions 189
8.1 Contributions . 189

8.1.1 Improving in-memory query processing 189
8.1.2 Improving processing of disk-resident data 190
8.1.3 Balanced database system architecture 191

8.2 Evaluation . 192
8.2.1 TPC-H performance . 192
8.2.2 Information retrieval with MonetDB/X100 193

8.2.2.1 Expressing IR tasks as relational queries 194
8.2.2.2 Performance on Terabyte TREC benchmark . . 194

8.3 Future research directions . 196
8.3.1 Improving the vectorized execution model 196
8.3.2 Storage-layer improvements 196
8.3.3 Parallel execution . 197
8.3.4 Alternative hardware platforms 197

Bibliography 199

Summary / Samenvatting / Streszczenie 217

vi

Acknowledgments

I had two supervisors at CWI. Martin Kersten always kept an eye on what this
new student from Poland was doing, and teased me with hard problems and
tricky questions when appropriate.
Still, it was Peter Boncz who had to live with all my questions, ideas, prob-

lems and complaints almost every day. The discussions we had were one of
the most thought-stimulating moments of my life, even when we disagreed on
something. Many of the ideas described in this book were conceived in these
meetings. I think Peter also enjoyed working together, as he wanted to continue
our cooperation when it was time for me to leave CWI. Thanks to his persis-
tence and energy, together we started a spin-off company, where we can now
keep discussing (and yes, Martin still keeps an eye on us).
This thesis would not exist as it is without two other people: Sándor Héman

and Niels Nes. We created a small team, which worked hard on many cool ideas
and produced some nice papers. We also missed some deadlines after sleepless
nights, but even that was an interesting experience.
I was very lucky to convince truly great researchers to take a closer look at

this thesis. I am honored to thank Goetz Graefe, Anastasia Ailamaki, Arnold
Smeulders and Chris Jesshope for their remarks on the content and agreeing to
become the members of my PhD committee.
The “insane” database group at CWI was a great place to work (and live).

I made good friends, and learned a lot from very smart people. With Roberto
Cornacchia it was great fun to work with, but also to go out to “the wind-
mill” (yes, the order should be different here, but this is a PhD thesis!). Stefan
Manegold always helped, even when he was overloaded, and also provided price-
less advice on beer brands. Sjoerd Mullender provided constructive critique on
technical ideas and (especially!) on my writing. Arjen de Vries added a bit of
less-hackerish flavor to some of the research we did. So, it was always a “work
and fun” combination – big “thank you” to all of you: Eefje, Erietta, Jennie,

vii

viii Acknowledgments

Marja, Milena, Nina, Theodora, Alex, Arjen, Fabian, Henning, Johan, Lefteris,
Matthijs, Nan, Romulo, Stratos, Wouter and, last but not least, Thijs (we will
do a 7A one day!).
Work described in this thesis resulted in VectorWise – a spin-off company

of CWI. I would like to thank Michał, Giel, Cecilia, Miriam, Dick, Bill, Roger,
Fred, Dan and Doug for making it possible and for your continued involvement
in this project.
During my PhD I did two internships, first at Microsoft and then at Google.

These were both great adventures, where I worked with extremely smart peo-
ple and made some really good friends. I would especially like to thank Craig
Freedman, Paul Yan and Gregory Eitzmann who were my mentors. Many others
made these internships fun and interesting: Bart van den Berg, Yuxi Bai, Greg
Teather, Sarah Rowe, Florian Waas, Wey Guy, Gargi Sur, Mark Callaghan,
Stephan Ellner, Ela Iwaszkiewicz, Robin Zueger, Marius Renn, Gary Huang,
Tom Bennett, Alex Chitea and the “Brasilian invasion”: Gustavo Moura and
Sam Goto (he is a programmer with this name!).
Life in Amsterdam was not only work. I would like to thank many people

that made these years a great adventure. Elena, Elisa, Dorina, Simona, Simone,
Sonja, Christian, Krzysztof, Stefano, Katja, Peter, Maya, Volker, Stephanie,
Wouter, David, Alexandra – thanks! Special thanks go to the “Polish mafia”:
Ania (cmok!), Agnieszka (A. and K.!), Dorota, Gosia, Ghosia, Kasia, Ewa, Iza,
Magda, Ola, Justynka, Asia, Ela, Michaś, Koris a.k.a. Misza, Banan, Radziu,
Bartek, Miłosz, Klaudiusz, Michał, Paweł (Z. and G.!), Adam, Wojtek (B., R.
and W.!), Daniel, Marcin, Zbyszek, Guma, Łukasz. With you, sometimes I felt
like I never left Poland.
When moving to Amsterdam, I left many great friends in Poland. We do

not meet that often now, but when we do, it is great to feel there are people
like them, people I can always return to. I won’t list all of them by name... as
they all have cool nicknames! Kluczyk, Zenzka, Qleczka, Agmyszka, AngeLinka,
P00h, Fox, X-Ray, BeWu, Rzóg, Seban, Kwaz, Bulba – hope to see you soon!
Finally, I would like to thank my Family: my parents, Basia and Marek, my

sisters, Agnieszka and Marta, and their close ones, Maciek, Bartek, Antoś and
Darek. I know it was not always easy, but I am thankful that you were watching
over me, supported all my choices, and were always there for me. Love you all.

Chapter 1

Introduction

The continuous evolution of computer hardware in the past decades has resulted
in a rapid increase of available computing power. However, not all application
areas benefited from this improvement to the same extent – most new hard-
ware features are targeted at computation-intensive tasks, including computer
games, multimedia applications and scientific computing. On the other hand,
general-purpose database systems have been shown to have problems with fully
exploiting today’s hardware performance potential [ADHW99].

Over the last two decades, CPUs evolved from relatively simple, single-
pipeline in-order devices that were easy to program into highly complex ele-
ments. These new processors introduce technologies like superscalar out-of-order
execution, SIMD instructions and multiple cores. To achieve optimal perfor-
mance on such hardware, the application code needs to follow new hardware-
conscious patterns and be amenable to compiler optimizations. Furthermore,
the increase of CPU frequencies resulted in an increasing imbalance between
the processor speed and memory latency. As a result, computers depend more
and more on multi-level cache memories that improve the memory access time,
but, again, often require the programmer to tune data access patterns in the
program.

In disk storage two trends can be observed that introduce new challenges for
system designers. First, random disk access latency improves significantly more
slowly than sequential disk bandwidth. Secondly, both disk latency and band-
width improve more slowly than the computing power of modern processors,
especially with the advent of multi-core CPUs.

1

2 Chapter 1: Introduction

1.1 Problem statement

Database engines have been shown to adapt poorly to the hardware develop-
ments presented above, in both query processing and storage layers.

Query execution. In this layer, many database systems continue to follow
the tuple-at-a-time pipelined model working with N-ary tuples. This makes the
CPU spend most time not on the actual data processing, but on traversing the
query operator tree. Such program behavior causes problems for modern pro-
cessors, since it can lead to poor instruction-cache performance and frequent
branch mispredictions, significantly reducing the performance. Even worse, the
tuple-at-a-time execution model makes it impossible for compilers to apply
many performance-critical optimization techniques such as loop-unrolling and
SIMDization. This is in contrast with other application areas, such as scien-
tific computing, where data-intensive approaches, spending most time on the
actual data processing, can be optimized into highly efficient programs. Some
of the database performance problems can be partially solved with techniques
that have been published in the area of architecture-conscious query process-
ing. However, most of the previous work in this field concentrates on improving
isolated problems within an existing execution framework, often limiting the
achieved performance gains to single operations.
An alternative approach to query execution has been presented in the Mon-

etDB system. Here, instead of working on single tuples, the system uses column-
at-a-time materializing operators, internally working as simple operations on
arrays of values. This results in bulk processing, improving performance by re-
moving the per-tuple interpretation overhead and exposing multiple compiler
optimization opportunities. However, the full materialization implied by this
model often results in large intermediate results. This causes extra memory or
disk traffic and degrades the performance of this system when working with
large data volumes. Also, a processing unit of a full column is often too large
to apply some of the existing optimization techniques such as memory prefetch-
ing. Finally, the column algebra used in this model makes it hard to implement
multi-attribute operations, resulting in extra processing steps.

Storage. Also in this layer database systems do not fully adapt to the chang-
ing hardware properties. While the relative performance of random I/O with
respect to sequential I/O gets worse, many database systems still often rely on
random-access methods, such as unclustered indices, even in data-intensive op-
erations. To keep this method efficient, database systems use storage facilities
that contain more and more disks to provide enough throughput of random-

Section 1.2: Research direction 3

access operations. This approach is unsustainable in the long run, but it is
not always clear how scan-based strategies could replace random-access ones.
Additionally, while random-access methods easily scale to handle heavy query
loads by using RAID systems and request batching, scalability of scan-based
approaches requires more investigation.
Another problem is that with computing power increasing at a faster pace

than disk performance, data delivery becomes a bottleneck even with sequential-
access approaches. This is especially visible in systems using the N-ary storage
model, where entire tuples need to be fetched from disk, even if only a small
subset of attributes is actually used. An alternative to this model are column
stores, which only read relevant attributes, requiring lower disk bandwidth. In
both storage models disk performance can also be improved with data compres-
sion. Here, it is crucial that the decompression is highly efficient, so it does not
dominate the actual data processing. Yet another challenge is making a system
efficiently support multiple concurrent users. In such scenarios, the performance
of current systems often degrades due to queries competing for resources, in-
stead of benefiting from the potential of performing the common tasks once for
many users.

1.2 Research direction

The above analysis leads to the general research question addressed in this
thesis:

How can various architecture-conscious optimization techniques be
combined to construct a coherent database architecture that efficiently
exploits the performance of modern hardware, for both in-memory
and disk-based data-intensive problems?

As the stated research question is very general, the research track presented
in this thesis originally focused on improvements to the MonetDB query execu-
tion layer. In the author’s master’s thesis on parallel query execution [Zuk02],
the fully materializing approach was identified as a significant performance and
scalability problem, and a more iterative approach was proposed, still working
within the MonetDB framework.
This idea evolved into a completely new vectorized in-cache execution ap-

proach that became the core of the MonetDB/X100 system [BZN05, ZBNH05,
Zuk05a]. This new approach extends the pipelined model by making the opera-
tors work on a set of tuples, represented by vectors, each consisting of hundreds

4 Chapter 1: Introduction

or thousands of values of a single attribute. The execution is divided into generic
operator logic and specialized, highly efficient data processing primitives similar
to the MonetDB operators. This allows the system to achieve the high perfor-
mance that bulk-processing delivers, without sacrificing system scalability.
After obtaining very high in-memory performance results on the 100GB

TPC-H benchmark it became clear that the high processing bandwidth of the
query execution layer (reaching over one gigabyte per second on a single CPU
core) is hard to match with typical disk systems. This resulted in shifting the
focus of this research to the storage layer, with the goal of researching new
disk storage techniques and disk access strategies able to satisfy these high
requirements [Zuk05b]. Consecutively, this led to the development of a number
of methods that improve data delivery performance for scan-based applications,
resulting in a ColumnBM storage system.
The techniques proposed in this thesis have been evaluated in two applica-

tion areas: data warehousing and decision support, represented by the TPC-H
benchmark [Tra06], and large-scale information retrieval, represented by the
Terabyte TREC benchmark [CSS].

1.3 Research questions

The research directions presented above reflect the following set of the underly-
ing research questions:

1. Is it possible to combine the benefits of the tuple-at-a-time model and
bulk-processing in a coherent query execution model?

2. What techniques allow database engines to rely more on sequential scans
instead of on random I/O?

3. What techniques can improve database I/O performance for individual
queries?

4. What techniques can improve database I/O performance for heavy query
loads?

This thesis tries to provide answers to these questions. However, it does not
look at proposed improvements in isolation, but rather investigates how differ-
ent optimizations, both new and existing ones, can cooperate within a coherent
database architecture. Additionally, it has a goal of making the proposed im-
provements readily applicable to database systems.

Section 1.4: Research results and thesis outline 5

1.4 Research results and thesis outline

The research presented in this book leads to the following thesis statement:

With the vectorized execution model database systems can min-
imize the instructions-per-tuple cost on modern CPUs and achieve
high in-memory performance, but bandwidth-optimizing improve-
ments in the storage layer are required to scale this performance to
disk-based datasets.

This thesis statement is supported with the following scientific contributions:

Vectorized in-cache execution model. Addresses research question 1, parts
published in CIDR’05 [BZN05], DAMON’06 [ZHB06] and DAMON’08 [ZNB08],
discussed in Chapters 4-5.
The thesis proposes a new execution model that combines the best properties
of the previously applied approaches. Benchmarks have demonstrated that it
brings numerous performance benefits, including reduced interpretation over-
head and multiple performance optimization opportunities. However, the strict
separation of the relational operator logic and the actual data processing, which
is the key feature of this model, makes it hard to provide fully vectorized rela-
tional operator implementations. This thesis proposes various methods of tack-
ling this problem, presenting how typical processing tasks can be efficiently vec-
torized. It also introduces new hardware-conscious techniques, for example im-
proved hash-based processing. The resulting execution engine efficiently exploits
modern CPUs and cache-memory systems and achieves in-memory performance
often one or two orders of magnitude higher than the existing approaches.

Bandwidth-optimizing disk access model. Addresses research question 2,
parts published in CIDR’05 [BZN05], BNCOD’05 PhD Workshop [Zuk05b] and
VLDB’07 [ZHNB07], discussed in Chapter 4.
With the high performance of the vectorized execution kernel, it becomes hard
to provide sufficient data delivery bandwidth from disk. With the increasing
imbalance between disk latency and bandwidth, strategies based on random
disk access are infeasible for most applications processing large data volumes.
This thesis discusses a number of approaches that avoid random accesses and
allow a scan-mostly query execution model. Additionally, even with scan-based
approaches, it is crucial to optimize the use of available disk bandwidth. The
DSM storage model, improved with lightweight compression, can reduce data
volumes that need to be transferred. Additionally, intelligent data sharing be-

6 Chapter 1: Introduction

tween queries minimize the number of times the same data needs to be fetched
from disk.

Ultra-lightweight data compression. 1 Addresses research question 3, pub-
lished in ICDE’06 [ZHNB06], discussed in Chapter 6.
This thesis introduces a set of compression algorithms that allow trading some
CPU power for an increased perceived disk bandwidth. This approach is espe-
cially useful in column-stores, as the contiguously stored data from the same
domain offers good compression opportunities, and only the used columns need
to be decompressed. The proposed algorithms are carefully tuned for modern
CPUs, achieving decompression bandwidth in the order of gigabytes per sec-
ond, which is one or two orders of magnitude higher than popular compression
solutions. Moreover, they are optimized for the vectorized in-cache execution
pipeline: data is decompressed on a vector granularity, and it is materialized
only in the CPU cache, from where it is immediately consumed for process-
ing. These two techniques make the decompression overhead minimal, leaving
enough CPU time to process the decompressed data. As a result the query
performance for disk-based datasets is significantly improved.

Cooperative scans. Addresses research question 4, published in VLDB’07
[ZHNB07], discussed in Chapter 7.
Since sequential data access is the preferred access method for data intensive
workloads, it is important to optimize scenarios with multiple concurrent queries
performing scans at the same time. The introduced “cooperative scans” tech-
nique extends the traditional buffer manager by dynamically managing query
activity, buffer content and I/O operations to maximize data sharing between
queries and minimize disk activity. It outperforms existing shared scans meth-
ods both in query latency and system throughput, as demonstrated for various
scenarios on PAX and DSM datasets.

1Joint work with Sándor Héman, parts of this research might appear in his PhD thesis.

Chapter 2

Computer hardware
evolution

This chapter presents the aspects of computer hardware that are the most im-
portant for the query processing techniques presented in this thesis. A computer-
architecture expert might consider the material presented here as only scratching
the surface, and he or she might just skim through this chapter. On the other
hand, we hope that it provides enough background for database researchers un-
familiar with the low-level hardware details to allow understanding the rationale
behind the techniques presented later in this book.
As described in Chapter 1, this thesis focuses on two major aspects of query

execution: efficient in-memory query processing and high-performance storage
facilities. These two areas map directly on the hardware features described in
this chapter. First, in Sections 2.1 and 2.2, we analyze the features of modern
CPUs and the hierarchical memory infrastructure. Then, in Section 2.3, we
discuss the features of the storage systems. For all discussed areas we provide a
short description of the evolution of a particular area, the current state of the
art, and the future trends.
Naturally, the material presented in this chapter is in no way exhaustive.

For readers interested in more details, we recommend the following resources:

• “Inside the Machine” [Sto07] by Jon Stokes – this book provides an easy to
understand introduction to the CPU architecture, including the descrip-
tion of the crucial aspects of the way CPUs process the data: pipelined exe-
cution, superscalar execution, SIMD instructions and hierarchical memory

7

8 Chapter 2: Computer hardware evolution

infrastructure. It uses the examples from the history of two of the most
important CPU families: Intel’s Pentium (and the following Core) archi-
tectures, and Apple/IBM/Motorola PowerPC line. However, it omits the
CPU architecture contributions coming from AMD and SUN processors,
and does not discuss the new hybrid processor architectures such as STI’s
Cell [IBM07] and Intel’s Tera-scale [ACJ+07].

• “Computer Architecture – A Quantitative Approach” [HP07] by John L.
Hennessy and David A. Patterson – this book provides a wider overview
of computer architecture, including not only the CPU internals but also
storage facilities. The book is significantly more technical than [Sto07],
so it is recommended for readers with some background in these areas.
Additionally, the most recent, 4th edition, provides an extensive discussion
of the multi-core generation of modern CPUs.

• journals: ACM Transactions on Storage (TOS), ACM Transactions on Ar-
chitecture and Code Optimization (TACO), ACM Transactions on Com-
puter Systems (TOCS).

• conference proceedings: International Symposium om Computer Architec-
ture (ISCA), International Conference on Supercomputing (ICS), Interna-
tional Conference on Computer Design (ICCD).

2.1 Modern CPU architecture

Over the last few decades, the architecture of CPUs evolved greatly and became
extremely complex. Table 2.1 and Figure 2.1 demonstrate the milestones in
that evolution, using Intel’s CPU line as an example. This section describes
the architectural features of the modern CPUs that are directly related to the
research presented in this thesis.

2.1.1 Basic CPU computing model

A basic model of a CPU is presented in the left-most side of Figure 2.2. This
model is highly simplified – the right-most side of the figure presents a more
complex architecture of Pentium 4 CPU. Looking at the basic CPU architecture,
the following major components can be identified:

Data is a set of operands for the CPU.

Section 2.1: Modern CPU architecture 9

Processor 16-bit 32-bit 5-stage 2-way Out-of- Out-of-order, Multi-core
address/, address/ pipeline, super- order, super-
bus, bus, on-chip scalar, 3-way pipelined,
micro- micro- I&D caches 64-bit bus super- on-chip
coded coded FPU scalar L2 cache

Product 80286 80386 80486 Pentium PentiumPro Pentium4 CoreDuo
Year 1982 1985 1989 1993 1997 2001 2006
Transistors 134 275 1,200 3,100 5,500 42,000 151,600
(thousands)
Latency 6 5 5 5 10 22 12
(clocks)
Bus width 16 32 32 64 64 64 64
(bits)
Clock rate 12.5 16 25 66 200 1500 2333
(MHz)
Bandwidth 2 6 25 132 600 4500 21000
(MIPS)
Latency 320 313 200 76 50 15 5
(ns)

Table 2.1: Milestones in the CPU development, looking at the Intel’s CPU line
(based on [Pat04], with the 2006 milestone added)

 1

 10

 100

 1000

 10000

 1982 1985 1989 1993 1997 2001 2006

P
er

fo
rm

an
ce

year

latency (ns)
clock (MHz)
latency (cycles)
bandwidth (MIPS)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1982 1985 1989 1993 1997 2001 2006

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t s

in
ce

 1
98

2

year

bandwidth (MIPS)
clock (MHz)
latency (1/ns)
latency (1/cycles)

Figure 2.1: Evolution of CPU characteristics

10 Chapter 2: Computer hardware evolution

Load−Store Unit

(TC)

Memory

Queue

Memory

Scheduler

LOAD STORE

Reorder Buffer

SIMD
FPU

Scheduler

Simple FP

SIMD
FPU

Data

Registers

CPU

Storage
Code

Results

Trace Cache Fetch

General FP
Scheduler

Fast Integer

Scheduler

Branch

unit

Front End

Back End

Integer units

FPU &
Vector
ALU

FPU &
Vector
STORE

Completion unit

SIU1 SIU2 CIU

Slow Int &

Queue

Integer & General FP

Reorder Buffer

uop Queue

(Trace Cache)

L1 Instruction Cache

Decode

Translate x86/

Instruction Fetch BU

BU

Execution
unit

Write

Figure 2.2: A simplified CPU model (left) and a diagram of Pentium 4 CPU
(right, from [Sto07])

Code is a set of commands for the CPU, describing what to do with the data

Storage is a container where the data and the code are stored. For now, we
can assume it is the main memory. CPUs typically cannot directly work
on the data stored there.

Registers are the local CPU storage, used to keep the data the CPU is cur-
rently working on. Data can be transferred between registers and storage
with special instructions.

Execution unit is a part of a CPU that performs requests tasks on given data,
for example addition of two elements. Typically, it operates on data taken
from registers, and it also saves the results in a register.

Section 2.1: Modern CPU architecture 11

CPU Cycles. CPU operates in cycles, which are synchronized by clock pulses,
issued by an external clock generator. The frequency of the clock corresponds
with the frequency of the CPU. In our simplified model, in each CPU cycle
the processor takes a single instruction from the code stream and performs a
requested instruction on the execution unit.

ISA. The code that CPU executes consists of a sequence of instructions, hav-
ing different forms, depending on the instruction set architecture (ISA) a given
CPU supports. Currently, the most popular ISA is x86 (and its 64-bit exten-
sion x64) present in CPUs such as Intel’s Pentium or the AMD Athlon. While
the ISA serves as an interface to a CPU, different CPUs can internally imple-
ment instructions from an ISA in different ways. Usually this is performed by
translating the ISA opcodes into internal microcodes (also known as microops or
uops), which are the actual commands executed by the CPU. This translation is
especially important in CISC (complex instruction set computing) CPUs, which
often need to translate complex ISA instructions (e.g. string operations in x86)
into a sequence of microcodes.

Execution stages. In the basic computing model, every cycle the processor
executes the next instruction. This execution can be decomposed into multiple
sequentially performed stages. The exact number and the nature of these stages
is different for various processors, but usually they follow this general set of
stages, presented in the top part of Figure 2.3:

• Instruction Fetch (IF) – get the next instruction to execute.

• Instruction Decode (ID) – decode the instruction from the binary op-
code form into the internal representation. Translation from ISA into mi-
crocodes also happens here.

• Execute (EX) – perform the requested task. While in a simplified CPU
model we assumed one execution unit, this can involve multiple different
devices, including arithmetic logic unit (ALU), floating-point unit (FPU),
load-store unit (SPU) and more.

• Write-back (WB) – save the result of the execution.

Usually, each of these stages is performed by a specialized CPU unit. Since the
stages execute in a fully sequential manner, this means that at a given time only
one part of the CPU is busy. As a result, the computational resources of the

12 Chapter 2: Computer hardware evolution

CPU cycle

CPU cycle

. . .

WB−2

EX−4

WB−3

Sequential execution

IF−1

ID−1

EX−1

WB−1

ID−2

IE−2

WB−2

IF−3

ID−3

EX−3

WB−3

Instruction

IF−2

fetch

Instruction
decode

Execute

Write back

Instruction
fetch

Instruction
decode

Execute

Write back

Time

Pipelined execution

IF−1 IF−2

ID−1 ID−2 ID−3

IF−4IF−3 IF−5 IF−6

ID−5ID−4

EX−3EX−2EX−1

WB−1

Figure 2.3: Comparison of sequential (top) and pipelined (bottom) instruction
execution

CPU are not fully used. For example, when an instruction is being fetched, the
execute unit is idle. Additionally, if an instruction is to be executed in a single
CPU clock cycle, the time of a cycle needs to be long enough to allow all stages
to execute, making it harder to increase the frequency of a CPU.

2.1.2 Pipelined execution

To improve the utilization of the CPU resources, the classical sequential execu-
tion has been replaced with a pipelined execution, presented in the bottom part
of Figure 2.3. In this model, different instructions are executed at the same time,
performing different processing stages. This keeps units responsible for different
stages busy all the time.
Since every stage takes only a fraction of time required by the entire se-

quence, this also allows shorter CPU clock cycle lengths, and hence higher CPU
frequencies. In Figure 2.3 the cycle length decreased perfectly to be one fourth
of the original length. However, in real CPUs the lengths of the stages are not
exactly the same, making the cycle length higher than the length expected from
a simple division of the original length by the number of stages.

Section 2.1: Modern CPU architecture 13

Pipelined execution, while not improving the execution latency of a single
instruction, significantly improves the instruction completion rate, or instruction
throughput, of a CPU. In our (simplified) example, this rate is increased four
times.

2.1.3 SIMD instructions

Execution units (e.g. ALU) typically work with instructions that perform a given
operation for a single set of operands (e.g. a single addition of two integers).
This follows the Single-Instruction-Single-Data (SISD) [Fly72] execution model.
However, there are many cases in which exactly the same operation needs to be
performed for a large number of elements. A simple example is negating an 8-bit
grayscale image, stored in memory as a sequence of bytes, each representing a
pixel. A straightforward SISD implementation would look as follows:

for (i = 0; i < num_pixels; i++)
output[i] = 255 - input[i];

A different approach is to use Single-Instruction-Multiple-Data (SIMD) execu-
tion model, where a single instruction can perform the same operation on multi-
ple elements at once. For example, imagine a CPU that has a special SIMD ALU
that can perform a subtraction of 8 bytes from a constant with one instruction.
Then the code becomes:

for (i = 0; i < num_pixels; i += 8)
simd_sub_const_vector(output + i, 255, input + i);

In this case, thanks to using a SIMD instruction, the loop needs to have 8 times
fewer iterations, significantly improving the performance.
SIMD instructions are very useful in areas processing large data volumes,

including multimedia processing, 3D modeling and scientific computing. To im-
prove the performance in these areas, most modern CPUs provide some form
of SIMD instructions. In particular, the most popular x86 processors provide a
set of SIMD extensions, including MMX, 3DNow! and SSE (versions 1 to 4).
This computational model is also a base for GPU-based processing and some
specialized processors, e.g. SPUs in a Cell processor (see Section 2.1.7.3).

2.1.4 Superscalar execution

In a classical pipelined execution, only one instruction can be at a given stage
of the processing pipeline. To further increase the CPU instruction throughput,

14 Chapter 2: Computer hardware evolution

modern CPUs use multiple execution units, allowing a “wider” pipeline, with
different instructions working on the same stage of processing. This is achieved
by extending the number of operands a given execution unit can process (e.g. by
making the instruction-fetch unit fetch 4 instructions at once), or by introducing
multiple execution units working on the same stage. In our simplified CPU
model, the latter can be achieved by having more than one ALU. In modern
CPUs there are not only multiple ALUs, but also other execution units for
different types of operations, including floating-point units (FPU), memory load-
store units (LSU) and SIMD units, possibly few of each.
Typically, the “width” of a superscalar CPU is measured as the number

of instruction that can enter the “execute” stage every cycle – this number is
usually smaller than the total number of all available execution units.

2.1.5 Hazards

Pipelined and superscalar execution only achieve their full efficiency if the pro-
cessing pipelines are filled at every moment. To do so, at every CPU cycle
the maximum available number of instructions should be dispatched for exe-
cution. However, to dispatch an instruction all the prerequisites for it should
be matched, including availability of code, data and internal CPU resources.
When one of the conditions is not met, the instruction needs to be delayed, and
a pipeline-bubble, or a no-op instruction, enters the pipeline instead. A bubble
in a pipeline causes a suboptimal resource utilization, and in effect reduces the
CPU instruction completion ratio.
In this section we discuss various events, usually called “hazards”, that can

result in instruction delays and pipeline bubbles.

2.1.5.1 Data hazards

Data hazards are situations when an instruction cannot be executed because
some of the inputs for it are not ready. Let us look at the following code snippet.

c = a + b;
e = c + d;

In this case, the computation of e cannot start before the result of c is computed.
As a result, the second addition is delayed.
CPUs try to limit the impact of data hazards by various techniques. In

forwarding, the output of a computation from one ALU can be directly passed
back as an input to this (or different) ALU, bypassing the register-write phase.

Section 2.1: Modern CPU architecture 15

Another technique is register renaming that can improve the performance in
case of false register conflicts. It exploits the fact that processors usually have
more physical registers than visible through the ISA. Here is an example of a
false register conflict.

c = a + b;
a = d + e;

At a first glance, the first instruction has to read the content of the a register,
before the second one writes its result to it. However, we can see that these
instructions are completely independent. As a result, the CPU can map the a
register in the first instruction to one physical register, and to another one in
the second instruction. Thanks to that, both instructions can execute simulta-
neously.
While typically not considered data hazards, cache-misses also cause execu-

tion units to wait for data delivery. This problem is described in Section 2.2.3.

2.1.5.2 Control hazards

One of the major problems in superscalar pipelines is making sure that the CPU
knows what instructions will be executed next. In case of a program without any
conditional statements and function calls, the code is just a well-defined sequence
of statements. However, if the sequence of instructions is hard to determine
in advance, it might be impossible to schedule the next instructions, causing
pipeline delays.

Branch prediction. Branch instructions are a typical example of a control
hazard. Usually, CPUs use branch prediction [McF93] to guess the outcome of
the involved predicate, and uses speculative execution to follow the expected
path. This prediction process comes in two variants: static and dynamic. Static
prediction for a given branch always assumes the same output. It is relatively
efficient in some special cases, for example in backward-branches that usually
correspond to program loops and are taken in the majority of cases. Branch hints
are another related technique, where a programmer or a compiler can annotate
the code with the most likely branch outcome. Dynamic prediction is a scheme
that analyzes the history of a given predicate, and uses it to guess the outcome of
the next computation. Additionally, some dynamic prediction schemes not only
store the expected branch result, but also the instruction that is to be executed
when branch is taken, reducing the need to fetch/decode it, allowing it to enter
the execution pipeline immediately. While beneficial, prediction techniques and

16 Chapter 2: Computer hardware evolution

Flushed instructions

. . .

.

fetch
IF−1 IF−2

ID−1 ID−2 ID−3

IF−4IF−3 IF−5 IF−6

ID−5ID−4

EX−3EX−2EX−1

WB−1 WB−2 WB−3

ID−6

WB−4

Instruction

Write back WB−6WB−5

EX−4 EX−5 EX−6

IF−7

ID−7

Execute

decode
Instruction

EX−7

WB−7

IF−7’ IF−8’ IF−9’

ID−8’ID−7’

EX−7’

.

. . .

. . .

.

. . .

Figure 2.4: Branch misprediction: pipeline flushing and pipeline bubbles

branch hints are not perfect. When a branch misprediction happens, the entire
pipeline (or large part of it) needs to be flushed (cleared), and the computation
needs to start from the beginning.
For example, in the following code, computing the sum of numbers from 1

to N , the loop branch can be predicted as taken:

; input: a is 0, b is N; output: sum of 1..N in b
loop:
add a, a, b ; a = a + b
dec b ; decrease b, set flag ’zero’ if it became zero
bnz loop ; branch to ’loop’ if the zero flag is not set
mov b, a ; b = a

This code, when executed for N = 2, will result in the following sequence of
instructions:

; a == 0, b == 2
add a, a, b ; I-1, a == 2, b == 2
dec b ; I-2, a == 2, b == 1
bnz loop ; I-3, a == 2, b == 1, branch correctly predicted as taken
add a, a, b ; I-4, a == 3, b == 1
dec b ; I-5, a == 3, b == 0
bnz loop ; I-6, a == 3, b == 0, branch incorrectly predicted as taken
mov b, a ; I-7, a == 3, b == 3

Figure 2.4 demonstrates CPU activity when executing this sequence of in-
structions. We see that after fetching I-3, the CPU correctly predicts the branch
will be taken, and fetches the proper instruction I-4. However, after fetching I-6,
the CPU assumes an incorrect code flow, and starts executing a wrong sequence
of instructions I-7’, I-8’, I-9’. Only when I-6 is fully evaluated, the CPU detects
that the taken sequence is incorrect, and it needs to flush the pipeline and start
executing from the proper I-7 instruction. However, when I-7 enters the “fetch”
phase, no other instructions can be in the latter phases, and pipeline bubbles

Section 2.1: Modern CPU architecture 17

occur, wasting system resources. Note that the delay between the properly pre-
dicted I-3 and I-4 is a single cycle, while the delay between I-6 and I-7 is four
cycles. This demonstrates how dangerous a branch misprediction can be for the
CPU efficiency.

Indirect branches. Branch prediction addresses the problem of direct bran-
ches, i.e. branches where the jump address is encoded in the instruction. How-
ever, there is a class of situations where the branch is indirect, with the jump
address stored in a register or in memory. Typical examples include calling a
function from a function array, or polymorphic method calls in object-oriented
languages. Such cases are often handled by branch-target-buffers (BTB), where
for a given originating address the last target address is stored. This is an effi-
cient solution if the indirect branch target is relatively static. However, in many
cases simple BTBs are not efficient enough, and more sophisticated methods are
necessary [DH98].

Predication. Another technique that overcomes branch problems is predica-
tion. Let us analyze the following code:

if (a < b)
a++;

else
b++;

On a traditional CPU, that does not use predication, it would compile into
assembly using a conditional branch instruction similar to this:

cmp a,b ; compare a and b, set the status flags accordingly
blt lower ; branch to ’lower’ if a < b
inc b ; a >= b, increase b
j end ; unconditional jump to ’end’

lower:
inc a ; a < b, increase a

end:

On CPUs that provide predication instructions can be annotated by a predicate
that defines if a particular instruction should be executed. For example, the
predicated code could look as follows:

cmp a,b ; compare a and b, set the flags accordingly
inclt a ; if lower-than (LT) flag is set, increase a
incge b ; if greater-equal (GE) flag is set, increase b

18 Chapter 2: Computer hardware evolution

In this scenario, the result of only one instruction will be used, without any
conditional branching. Predication is provided by e.g. ARM and IA-64 (Ita-
nium) architectures. It often provides a significant speed improvement, and,
while single instruction codes can get longer because of extra bits needed for
the predicate definition, the overall code size can get reduced due to a smaller
number of instructions.

2.1.5.3 Structure hazards

Another type of hazards are the structure hazards, related to the computational
limits of modern CPUs. For example, on many architectures it is possible to
fetch/decode more than one instruction in one CPU cycle, but only one in-
struction per-cycle can use load-store units. In such a situation, if two memory
accessing instructions are decoded at the same time, one of them needs to be
delayed, due to insufficient LSU resources.

2.1.6 Deepening the pipeline

As presented so far, the execution pipeline is relatively simple, and only consists
of a few stages. However, modern CPUs use a full bag of tricks that improve
performance and try to limit the negative effect of the discussed hazards. As
a result, the pipeline needs to be broken into more logical steps. Additionally,
the steps are getting more and more complicated, and with an increasing CPU
frequency, they often cannot execute in a single clock cycle. For this reason, the
stages need to be broken into smaller sub-stages, further increasing the pipeline
depth, and resulting in super-pipelined CPUs.
Since the clock frequency used to be the most distinguishable CPU fea-

ture, with higher frequencies positively influencing sales, processor companies,
especially Intel, for a long time had this parameter as the focus of their CPU
architecture design. An extreme example are Pentium 4 Prescott CPUs that
have a pipeline of 31-stages. Such long pipelines allowed for very high CPU
frequency, resulting in great performance on CPU-friendly code. On the other
hand, the hazard-induced penalties in such pipelines become even higher. This
increasing penalty has led to a reverse in the trend, with recent CPUs having
shorter pipelines (e.g. 14 stages in Intel Core2). Still, even with such “short”
pipelines the impact of pipeline bubbles is significant, stressing the importance
of generating code that contains as little hazards as possible.

Section 2.1: Modern CPU architecture 19

2.1.7 Development trends and future architectures

For decades the major focus of the CPU designers was the performance of a sin-
gle CPU. Typical methods of improving this performance are increasing clock
frequency, super-scalar CPUs, out-of-order execution, and larger cache sizes.
However, further improvements in these already highly-sophisticated areas result
in relatively small gains, significantly increasing system complexity and power
consumption at the same time. Furthermore, many application areas, among
them database systems, have problems with fully exploiting such complex ar-
chitectures. As a result, in the last few years new trends in CPU architectures
become popular.

2.1.7.1 Simultaneous multithreading

In many cases, a single executing thread has problems with full utilization of
the available computational resources in modern superscalar CPUs. This is be-
cause of instruction-issue delays related to data-dependencies, memory waits
(see Section 2.2.3) etc. Simultaneous multithreading (SMT) [TEL95] improves
this situation by allowing multiple threads to be executing at the same time.
This is achieved by having a per-thread copy of some of the CPU sections,
e.g. registers, but sharing a single instance of the main execution resources be-
tween the threads. Multiple hardware threads provide more instructions every
cycle, and also allow hiding delays in one thread by executing instructions from
another.
SMT is a relatively cheap technique in terms of incorporating into CPUs, as

the added per-thread CPU infrastructure is small. It has been implemented in
some of Intel’s Pentium 4 and Core i7 CPUs (as hyper-threading [MBH+02]),
IBM Power5 [SKT+05] and Sun Microsystems UltraSparc chips [Sunb] that
allow even 8 simultaneous threads in UltraSparc T2 CPUs.

2.1.7.2 Chip multiprocessors

With advances in the chip miniaturization process, more and more transistors
become available on a die [Moo65]. This allows not only to create more sophisti-
cated CPU cores, but also, to put multiple fully functional cores on a single chip.
Typically, cores have both designated private memory (usually L1 cache), as
well as shared cache memory (usually L2). This technology, known as chip mul-
tiprocessors (CMP), recently became a de-facto standard, being available both
in mainstream CPUs, including Intel’s Core and AMD’s Athlon and Phenom

20 Chapter 2: Computer hardware evolution

chips (up to 4 cores), as well as server processors, including Sun’s UltraSparc
(up to 8 cores).
Quick widespread adoption of CMP CPUs puts new challenges on developers.

To utilize the performance of the underlying hardware, parallel programming
techniques, previously applied to a relatively limited number of applications,
now need to be used in most types of programs. Furthermore, optimizing soft-
ware for the new architecture becomes increasingly hard with higher degrees of
parallelism. Another complication factor occurs in situations where CMP and
SMT are combined in a single chip, as is the case e.g. in Sun’s UltraSparc T2
CPU that can have 8 cores, each with 8-way SMT, resulting in 64 concurrently
available hardware threads.

2.1.7.3 Heterogeneous computation platforms

Previously discussed developments in processor technology assumed that ap-
plications are running on top of one or more identical general purpose pro-
cessors. However, in modern computers, more and more computational tasks
are off-loaded to designated specialized units. A typical example are graphics
processing units (GPUs), optimized for processing 2D and 3D graphics, and
available in almost every new computer, either as dedicated graphics cards, or
integrated in the motherboard chipset. Other examples include devices special-
ized for digital signal processing (DSP), video en- and de-coding, network traffic
handling, physics simulation and data encryption. While in most cases these
additional processors are used only for their designated task, in many cases
they can be used for other applications. Again, a typical example are graph-
ics cards that provide pure computational power often exceeding the CPU, as
demonstrated with a record-breaking sort performance [GGKM06]. Thanks to
this high speed, as well as the continuously improving programming flexibility
of these devices (e.g. NVIDIA CUDA [NVI08]), GPUs became a very popular
platform for numeric-intensive tasks.
Multiple computational units with different properties are also possible even

on a single chip. For example, the STI Cell Broadband Engine [IBM07] con-
sists of a single general-purpose processor and 8 additional cores specialized for
streaming applications (e.g. multimedia). Another example is the future Intel
Tera-Scale platform [HBK06, ACJ+07] that envisions 10s to 100s different cores
with different functionality on a single chip. Also in systems-on-chip [Wol04]
(SoC) designs multiple functional units are combined on a single chip. For exam-
ple, Sun’s UltraSparc T2 processor [Sunb] combines traditional general-purpose
cores with a network controller and a cryptographic unit. SoC devices are es-

Section 2.2: Memory system 21

Memory DRAM Page Fast Fast Synchronous Double DDR2
module mode page mode page mode DRAM data rate SDRAM

DRAM DRAM DRAM SDRAM
Year 1980 1983 1986 1993 1997 2000 2006
Module 16 16 32 64 64 64 64
width (bits)
Mbits per 0.06 0.25 1 16 64 256 1024
DRAM chip
Bandwidth 13 40 160 267 640 1600 8533
(MBit/sec)
Latency 225 170 125 75 62 52 36
(ns)

Table 2.2: Milestones in the DRAM development (adapted from [Pat04], with
the 2006 milestone added)

pecially popular in embedded environments, and include e.g. Intel IXP series,
Philips Nexperia and Texas Instrument OMAP chips.
The heterogeneous nature of the discussed platforms brings additional chal-

lenges for software developers. For optimal performance, applications need to be
designed to exploit the available hardware, e.g. by performing a particular task
using computational units best suited for it. However, with increasing hetero-
geneity of the computers, optimizing an application for every single configura-
tion is not economically feasible. This calls for applications that can dynamically
adapt to the available computing resources. An example of such approach is the
OpenCL framework [Khr09], where CPUs, GPUs and other computing devices
can be transparently used by the application.

2.2 Memory system

So far in our discussion, we have focused on the internal details of the CPU
execution pipeline, assuming both data and code come from an abstract exter-
nal “storage”. For a long time this “storage” was just main-memory, typically
consisting of DRAM chips. Table 2.2 shows the major evolution steps of DRAM
over last decades, and the trends are visualized in Figure 2.5. Comparing to
Figure 2.1 we see that over time the memory latency improves significantly
more slowly than the CPU frequency. This means that a modern CPU, when
performing a memory-access instruction, needs to wait a significant amount of

22 Chapter 2: Computer hardware evolution

 0.01

 0.1

 1

 10

 100

 1000

 10000

’80 ’83 ’86 ’93 ’97 ’00 ’06

P
er

fo
rm

an
ce

year

capacity (Mbits per chip)
bandwidth (Mbit/s)

latency (ns) 1

 10

 100

 1000

 10000

 100000

’80 ’83 ’86 ’93 ’97 ’00 ’06
P

er
fo

rm
an

ce
 im

pr
ov

em
en

t s
in

ce
 1

98
0

year

capacity
bandwidth
random access (1/latency)

Figure 2.5: Memory chips characteristics evolution

time before the data is actually delivered from memory. This imbalance is actu-
ally significantly higher than the raw numbers in Tables 2.1 and 2.2 suggest, as
the actual cost of the memory-access stage is only a fraction of the CPU latency,
since other pipeline stages are included in this number. In reality, to satisfy the
CPU data needs, the memory should deliver the data with the latency of only a
few CPU cycles. Since commonly used dynamic-RAM (DRAM) memory chips
cannot provide such performance, accessing them directly is very expensive.

2.2.1 Hierarchical memory system

To overcome the problem of expensive main memory access, a simple main-
memory + CPU architecture has been extended with cache memories – small,
but fast specialized memories, designed to keep the most recently accessed data,
typically built with static-RAM (SRAM) chips [Smi82]. Cache memories hold
both the process data as well as program instructions – this leads to distinguish-
ing between D-cache and I-cache, respectively. With proper application design,
most memory accesses can use this fast memory, minimizing the main-memory
latency overhead. Over time, with further advancements of chip manufacturing
techniques, multiple cache-memory levels have been introduced, resulting in a
hierarchical memory system. An example of such a system is presented in Fig-
ure 2.6. Typically, a modern computer memory hierarchy is a combination of

Section 2.2: Memory system 23

the following levels, ordered by the increasing latency1:

• registers – CPU registers can be seen as the closest storage for the CPU,
and often the only storage that CPU can perform computation on. Typi-
cally, there are 4-256 registers and accessing them takes 1-3 cycles.

• L1 cache – small (ca. 16-128KB) and fast (2-10 cycles) memory, on-chip,
typically divided into I-cache and D-cache

• L2 cache – larger (ca. 256-8192KB) but slower (10-30 cycles) memory,
usually on-chip, typically shared by instructions and data

• L3 cache – relatively large (1MB+) but slow cache, either on-chip or on a
motherboard. Only on some platforms.

• main memory – large (gigabytes) but relatively slow (50-300 cycles) stor-
age.

• solid-state disk - large (tens or hundreds of gigabytes) but moderately slow
(tens to hundreds of thousands of cycles).

• magnetic disk – very large (hundreds of gigabytes or terabytes) but very
slow (millions of cycles) storage.

2.2.2 Cache memory organization

Cache memory is typically divided into a set of fixed-size cache lines, usually
ranging from 16 to 128 bytes. To simplify cache management, each cache line
holds data from an area in main memory aligned to the cache line size. Addi-
tionally, when data is transferred into cache, typically the entire cache line is
filled. This means that even when asking for a single byte, the memory sub-
system will deliver e.g. 64 bytes, and that amount of cache will be used. As a
result, small data requests lead to poor cache utilization, promoting the use of
large data transfers.
Cache lines are usually organized as two-dimensional arrays, where one di-

mension is the set and the other is the set associativity [PHS99]. For a given
memory address, its set id is typically determined by a function on the address
bits. Within a set, the line id is determined by matching the reference address

1Disk storage is accessible as a “normal” memory through virtual memory facilities (see
Section 2.2.4)

24 Chapter 2: Computer hardware evolution

L1 Cache

Main Memory

Memory Page

L2 CacheL2 cache−line
C

P
U

 D
ie

L1 cache−line

CPU

registers

file

BUS

Disk
(virtual memory)

Figure 2.6: Hierarchical memory structure: registers, caches, main memory, vir-
tual memory on disk (from [Bon02])

with the address tags of the stored data. If there is only a single set (all addresses
map onto the same set id), the cache is referred to fully associative. On the other
extreme, caches with a set associativity of 1 are called directly mapped. Typi-
cally, the associativity of the caches is small, in range of 1..16, since an increased
number of potential lines for a referenced address can negatively influence the
cache access time. Note that in a hierarchical memory system caches at different
levels may vary in size, cache-line size, associativity, etc.

2.2.3 Cache memory operation and control

When CPU refers to a particular memory location, the set id for the referenced
address is computed and the cache lines in this set are checked. If one of the
address tags matches the requested address, a cache hit occurs, and the cache
line can be delivered to the CPU immediately. Typically, this line is also marked
as referenced, to influence the replacement policy. If the address is not in any of
the locations, a cache miss occurs. In this situation, one of the lines is evicted,
using some fast replacement policy (e.g. LRU), and a request to fetch the needed
memory area is sent to the memory controller (or a higher cache level). Once
that request is completed, the cached line is sent to the CPU, and processing

Section 2.2: Memory system 25

can continue.
This simple behavior is intuitive, but there are situations where extra cache

functionality is beneficial. A typical example is sequential memory access: in this
situation, modern CPUs can predict that after fetching a particular cache line,
soon the next line will be needed, and prefetch it. For example, the Intel Core
architecture provides two components, DCU and DPL [Int07a], responsible for
prefetching data into L1 and L2 cache levels, respectively. This allows overlap-
ping the memory access latency with the current CPU activity. Similarly, if an
application has the up-front knowledge about which memory locations will be
referenced next, it can use software prefetching instructions [Int07b, Adv05] to
issue requests for these locations. Since prefetching can lead to increased CPU
activity and memory traffic, if not used properly, it can have an adversary effect,
especially in case of more expensive and error-prone software prefetching.
Special instructions are also available for other cache-controlling tasks. In

situations when some computed data is known not to be needed for now, it can
be saved directly into main-memory, without polluting the cache. Similarly, if
some previously read memory is known to be of no use, it can be flushed from
the cache to reduce evictions of other, more useful data.
Since cache memories serve as a view of a subset of main memory, it is cru-

cial that the changes done to main memory are reflected in the cache content.
This is especially important in multi-CPU and multi-core systems, where dif-
ferent processing units have private caches. In such architectures, special cache-
coherence protocols are being used [Ste90][HP07, Section 4.2] to guarantee data
consistency. The overhead of these protocols can be significant, therefore it is
important to design parallel algorithms such that the need of applying these
consistency mechanisms is minimized.

2.2.4 Virtual memory

Another important aspect of the memory infrastructure is the difference be-
tween the physical and the virtual memory. In early computer generations, the
entire computer memory was directly accessible to the program. In modern com-
puters, however, the address space of an application is explicitly managed by
the operating system. Typically it does not constitute a single contiguous area,
but instead, it consists of a set of pages, where each virtual page refers to some
physical memory area. Page sizes are typically in range of few kilobytes (4KB on
x86 platforms), but some systems allow multiple different page sizes, reaching
256MB on Intel Itanium architecture [Int06]. Having virtual pages allows mul-
tiple improvements to a vanilla memory system, including enhanced security,

26 Chapter 2: Computer hardware evolution

sharing memory between applications, on-demand physical memory allocation,
copy-on-write memory areas, memory-mapped files and more.
One performance problem that the virtual memory systems introduce is the

need of translating a virtual address as seen by an application into a physi-
cal memory area. Typically, an operating system stores a page table that pro-
vides this translation. Since accessing this table for each address translation can
be expensive, CPUs typically use a highly specialized cache, called translation
lookaside buffer (TLB), that stores translations for the recently accessed pages.
Like cache memory, it can also be hierarchical (L1, L2), and independent for
instructions and data (I-TLB, D-TLB).
The TLB capacity can be small, e.g. L1 D-TLB on Athlon 64 can keep

track of 32 recently accessed 4KB pages [Adv05]). Since TLB-misses can be as
expensive as cache-misses, the applications need to take special care of avoiding
them. Typically, sequential access patterns do not incur these problems, but
randommemory accesses can easily result in frequent misses. One of the methods
of reducing the TLB misses is to explicitly use larger pages, available in some
operating systems. This allows to have fast translation for larger memory area
(e.g. 8 entries for 2MB pages on Athlon 64 [Adv05]), but may result in an
increased memory fragmentation.

2.2.5 Future trends

Continuous increase in the cache sizes allows larger datasets to be quickly ac-
cessed, but also results in an increased access latency. This is especially vis-
ible in L2 caches, where the latency increased by a factor of 3 in the last
decade [HPJ+07]. As a result, further increases in the L2 sizes can have a detri-
mental effect for applications with a working set already fitting in the cache.
To overcome this problem, manufacturers limit the L2 cache sizes, and intro-
duce additional L3 cache levels. While this solution used to be applied mostly
in the server market, in CPUs like Intel Itanium 2 (6MB on-chip L3) and IBM
Power6 (32MB off-chip L3), AMD Phenom and Core i7 chips make this solution
mainstream, with 2MB and 8MB on-chip L3 cache, respectively.
The evolution of the cache memory hierarchy is also heavily influenced by

multi-core CPUs, since typically parts of the hierarchy are private to each core,
while other parts are shared. For example, Intel Core2 CPU uses private L1
caches and shared L2, while AMD Phenom uses private L1 and L2 caches and
shared L3. This variety of configurations makes it continuously more challenging
to provide solutions optimally exploiting all of them.

Section 2.3: Hard-disk storage 27

RPM 3600 5400 7200 10000 15000 15000
Product CDC Wrenl Seagate Seagate Seagate Seagate Seagate

94145-36 ST41600 ST15150 ST39102 ST373453 ST3450856
Year 1983 1990 1994 1998 2003 2008
Capacity (GB) 0.03 1.4 4.3 9.1 73.4 450
Bandwidth 0.6 4 9 24 86 166
(MB/sec)
Latency 48.3 17.1 12.7 8.8 5.7 5.4
(msec)

Table 2.3: Milestones in the hard-drive technology development (from [Pat04],
with the 2008 milestone added)

With the increasing popularity of multi-core chips, and hence parallel pro-
grams, the synchronization techniques between processes become increasingly
important. Traditional locking mechanisms, while known for decades, are of-
ten hard to use, expensive and error-prone. As a result, recently, hardware
mechanisms for lock-free operations have been proposed. Transactional mem-
ory [HM93] introduces a mechanism that allows a set of memory operations to
execute atomically, with an explicit commit at the end of a code block. Since
this commit can succeed or fail, the software needs to check for the result and
adapt to it. Another solution that does not require any software modifications
has been proposed with transactional lock removal [RG02]. Here, the hardware
can identify the transactions looking at the locks acquired by the program, spec-
ulatively execute them without acquiring a lock, and apply conflict resolution
schemes in case of conflicts. Both proposals reduce the need of locking and hence
can significantly improve performance.

2.3 Hard-disk storage

The previous two sections discussed the major features of modern CPUs and
memory subsystems, crucial for high-performance in-memory data processing.
Since this thesis focuses on large-scale data sets, we now focus on the charac-
teristics of typical storage systems.
The most popular medium for large-volume data storage are magnetic disks,

with an example disk presented on the left-most side of Figure 2.7. In this
solution, data is stored on platters with a magnetic surface and accessed with
a moving head. Each platter is divided into tracks, and each track consists of
sectors. Platters are attached to rotating spindles that perform thousands of

28 Chapter 2: Computer hardware evolution

FM FM

FM

FM

FM FM

FM

SRAM

FBC3

FBC2

FBC1

FBC0

AMBA

D
E
M
U
X

M
U
X

Buffer
Multiple

Flushers

Splitter

Buffer

SDRAMI

F

F

O(SATA)
Logic

Interface
HostHost

Interface
Connector

...

...

...

...

FM

ARM7 CPU

*FBC: Flash Bus Controller

*FM: Flash Memory

Sector

Track

Spindle

Platter

Head

Figure 2.7: Hard-drive diagram (left) and an example solid-state disk diagram
(Mtron SLC, right)

rotations per minute. To read a particular data unit, the head needs to perform
a seek to a proper track, and wait for the platter to rotate to a proper position
to read a given sector. As a result, disk latency can be computed as a sum of
the seek time, rotational delay and the transfer time.

Table 2.3 presents the major development milestones for the hard-drive tech-
nology over last 25 years. The performance trends, visualized in Figure 2.8, are
similar to those of memory chips, presented in Figure 2.5: while the capacity
grows at a very rapid pace, the bandwidth, while steadily improving, lags be-
hind it, and the latency improves very slowly. In terms of bandwidth, disks are
typically in order of 100 times slower than memory, and in terms of latency, this
difference is in order of 10, 000 to 100, 000. As a result, efficient data delivery
from disk is a significantly harder problem than memory access.

The other factor that distinguishes hard drive performance from main mem-
ory is the difference between the cost of random access and sequential band-
width. Reading a single byte from memory takes in range of 100ns if random
access is used and a fraction of a nanosecond if sequential access is used,2 a 100
to 1000 times difference. On disk, reading a single byte takes ca. 5ms with ran-
dom access, and ca. 20ns with sequential access, resulting in a difference factor
of 100, 000 to 1, 000, 000. As a result, on disk it is even more important to use
sequential access methods.

2assuming multi-gigabyte sequential RAM bandwidth possible with prefetching mecha-
nisms

Section 2.3: Hard-disk storage 29

 0.01

 0.1

 1

 10

 100

 1983 1990 1994 1998 2003 2008

P
er

fo
rm

an
ce

year

latency (ms)
bandwidth (MB/s)

capacity (GB) 1

 10

 100

 1000

 10000

 100000

 1983 1990 1994 1998 2003 2008

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t s

in
ce

 1
98

3

year

capacity
bandwidth
random access (1/latency)

Figure 2.8: Hard-drive characteristics evolution

2.3.1 Disk performance improvements

One of the methods of improving access to disk is caching the most recently
accessed disk areas in the available main memory. This plays a similar role as
cache-memories in hierarchical memory systems. Caching can be also performed
on the disk itself – modern disks can have cache memories of several megabytes.
Another improvement, performed in both operating systems as well as in the

disk controller, is request scheduling. In many cases, especially with random-
access-oriented applications, it is common to have multiple outstanding read or
write requests at the same time. These pending accesses can be re-ordered to
match the movement of a disk arm and platter rotation, reducing the average
request latency [TP72]. It also allows for prefetching data from disk, similarly
as in memory prefetching.
Relatively high sequential disk bandwidth is only possible if the high cost of

moving the disk head and waiting for the platter rotation is paid once for a large
unit of data. This is especially important in scan-intensive applications, where
multiple processes perform sequential data access. In such cases, it is important
to use large, isolated I/O operations, to amortize the random seek cost. This is
presented in Figure 2.9 with an experiment that measures the bandwidth of the
disk system by issuing a sequence of sequential or random disk accesses, with
a varying I/O unit size, and not using the caching and prefetching facilities

30 Chapter 2: Computer hardware evolution

 0.1

 1

 10

 100

1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (

M
B

/s
)

I/O unit size

12-disk RAID, sequential
single disk, sequential
12-disk RAID,	random

single disk, random

Figure 2.9: Disk read bandwidth depending on the I/O unit size, using sequential
and random access patterns

provided by the operating system. This experiment shows that to get a good
bandwidth with random accesses, access granularity needs to be in range of a
few megabytes. Note that databases and operating systems typically use much
smaller disk pages (4-64KB).

2.3.2 RAID systems

To improve the performance of the storage layer, it is common to use multiple
disks, typically in some form of a RAID system [PGK88]. While many different
RAID configurations are possible, they typically exploit three basic concepts:
mirroring, which stores the same data on multiple drives; striping, which par-
titions data across different drives; and error correction (or fault tolerance),
which allows detecting (e.g. using CRC [PB61]) and possibly fixing (e.g. using
error-correcting codes [RS60]) problems related to data corruption and hard-
ware failures. These three concepts are used to build various RAID levels (e.g.
RAID-0 or RAID-6), including nested RAID configurations (e.g. RAID 0+1).
Depending on the used configuration, a RAID system can improve the storage
layer in areas of capacity, performance and reliability.
While RAID levels can significantly improve performance for both random

and sequential access scenarios, using them often requires careful tuning, and

Section 2.3: Hard-disk storage 31

can have some detrimental effects. Typically, the data is spread between disk
not on a single-byte basis, but using larger blocks, e.g. 64KB in size. As a result,
using I/O units of sizes smaller than the block size, involves just a single disk,
and only with larger I/O units multiple disks are used, resulting in an improved
bandwidth, as seen in Figure 2.9 for RAID systems. This figure also shows
that the I/O size at which the random-IO performance approaches that of the
sequential access is larger for the RAID systems. This is caused by the fact that
in RAID systems multiple disks are used to serve an I/O request, resulting in
a per-disk bandwidth being only a fraction of the original size, reducing the
benefit of large I/Os. In such situations, to improve the sequential performance,
the I/O unit size needs to be scaled proportionally to the number of used disks,
quickly reaching tens of megabytes, as shown in Figure 2.9. With such transfer
sizes, the memory consumption of the I/O layer can be very high, especially
when multiple large requests are served at the same time.

2.3.3 Flash storage

The most visible alternative to magnetic disks areNAND flash memories [MA95,
GT05], currently the storage medium of choice in small, portable computers and
multimedia devices. In this solution, multiple flash chips are combined into a sin-
gle device, typically visible to the system as a regular drive, as presented in the
right-most side of Figure 2.7. Current generations of flash drives excel over tra-
ditional disks in sequential access, random-read performance [LM07, SHWG08],
power consumption and failure rates, as demonstrated in Table 2.4. Flash mem-
ories are less attractive in the price/capacity dimension, as their per-byte price is
significantly higher. To overcome this difference, flash memories are also applied
in hybrid drives – traditional magnetic drives with an integrated flash-drive, used
to store most frequently accessed data.
One particularly interesting aspect of NAND devices is that in any given

area on the flash memory all the bits are by default set to 1. Clearing a bit
to 0 is a relatively fast process. However, to set a 1 bit again, the entire area
needs to be erased to its previous state, making this process expensive. To
optimize performance for this behavior, a set of algorithms similar to those
used previously for write-only storage has been proposed (see Section 3.5.7).
However, currently available flash drive interfaces typically imitate standard
disks, not exposing the low-level functionality of setting particular bits and
explicit erasing. As a result, any write to a flash device typically causes an erase
operation, resulting in a significant difference between the random read and
random write performance, as presented in Table 2.4.

32 Chapter 2: Computer hardware evolution

NATA USB IDE FC
Disk Flash Flash Flash

GB 500 4 32 146
$/GB 0.20 5.00 15.62 -
Watts (W) 13 0.5 0.5 8.4
seq. read (MB/s) 60 26 28 92
seq. write (MB/s) 55 20 24 108
rnd. read (IO/s) 120 1,500 2,500 54,000
rnd. write (IO/s) 120 40 20 15,000
IO/s/$ 1.2 75 5 -
IO/s/W 9.2 3,000 5,000 6,430

Table 2.4: Disk and Flash characteristics (from [SHWG08]))

2.3.4 Future trends

Current developments in magnetic hard-drive technology follow the trends ob-
served over the last decades: capacity and bandwidth increase at a rapid pace,
while latency improves very little. This tendency will most likely continue, since
the first two parameters are related to density of data on disk platters, while
the third one depends on mechanical factors – head seek time and platter ro-
tation speed – which are much harder to improve. In this situation, flash-based
devices, with their rapidly improving performance parameters and, at the same
time, rapidly decreasing prices, are quickly becoming a feasible storage solution
for a large class of applications.

Another possible direction are micro-electro-mechanical store (MEMS) de-
vices [Sch04]. In these devices, data is organized on a rectangular surface, and
accessed by thousands of heads. Comparing to traditional magnetic disks, these
devices provide a few-times improvement in terms of sequential access and ca.
10 times improvement in random-access [Ail05]. Additionally, the large available
number of heads allows for performance improvements impossible for standard
disks [SSAG03]. First, heads not used by the priority tasks can be exploited to
provide data for background processes. Secondly, fine-grained data organization
allows both row-order and column-order data access for two-dimensional data
structures.

Section 2.4: Conclusions 33

2.4 Conclusions

This chapter provided the overview of the most important aspects of modern
hardware, concentrating on three areas: processor architecture, memory system
and disk technology. Advances in the processor architecture resulted in highly
efficient chips, but programs need to be carefully designed to fully exploit the
new features (multiple execution units, SIMD) that deliver this performance.
On the memory level, a hierarchy of CPU caches forces developers to re-design
their in-memory data storage strategies. Finally, on disk level, the increasing
imbalance between latency and bandwidth requires applications to operate with
large I/O units, with sequential scans becoming a preferable access method.
These features of modern hardware have direct impact on the research described
in the remainder of this thesis.

34

Chapter 3

Databases on modern
hardware

Database management systems (DBMSs) provide application developers with a
high-level abstraction of data management tasks. They expose generic interfaces
that allow accessing and manipulating data, while at the same time providing
features like concurrency control, transaction management, failure recovery and
consistency checks. Additionally, they hide the hardware details of a used ma-
chine, helping applications to run on various platforms.
This chapter discusses the major characteristics of a DBMS, focusing on

elements crucial for this thesis. In Section 3.1, we briefly describe the relational
data model and relational algebra that are the fundamentals of most existing
database engines. Section 3.2 describes the typical architecture of a DBMS,
shortly discussing the most important components. Two of these components –
the query executor and the storage manager – are of most interest for this thesis,
and in this chapter we present different approaches of implementing them, both
significantly influencing the research presented in the following chapters of this
thesis. First, Section 3.3 discusses the most commonly used implementation
approach, based on an iterator execution model working on top of an N-ary
storage model. Then, Section 3.4 presents a completely different approach, found
in the already existing MonetDB system, which is using a fully-materialized
algebra based on the decomposed (column) storage model. Both architectures,
while having benefits in some areas over the other one, do not make a full use
of the possibilities of modern computer hardware. To improve this situation,

35

36 Chapter 3: Databases on modern hardware

multiple optimization techniques have been proposed, as presented in Section 3.5

3.1 Relational model

Since late 1970s, the relational model is the most popular model in database
systems. In this model, the data is stored as a set of N-ary relations, where each
relation is a subset of a Cartesian product of N domains. A relation consists
of a set of tuples, each containing N attribute values, one for each attribute.
Typically, relations are visually represented as tables, where tuples are rows and
attributes are columns, as presented in the left-most side of Figure 3.1. Still,
the model itself does not impose any particular physical data representation. In
particular, the relations by definition are unordered.
The operations on relations are defined in relational algebra, consisting of

a number of operators. The basic operators include projection (π), selection
(σ), aggregation (G), Cartesian product (×) and various types of join (1). For
example, using relation People from Figure 3.1, to compute the age-bonus for
all people older than 30, one could use the following relational query:

πId,Name,Age,Bonus=(Age−30)∗50 (σAge>30 (People)) (3.1)

Similarly as its underlying model, the algebra does not discuss how partic-
ular operations should be performed, but only what is the outcome of a given
operator.
While the relational model is the most popular approach in the database

world, other solutions exist. For example, object-oriented [Bar96], hierarchi-
cal [Bla98] or semi-structured [BGvK+06] databases are all being used in special-
ized data management tasks. In this thesis we focus on the relational databases
and query processing in these systems, but some of the techniques can be applied
within other paradigms.

3.1.1 Relational model implementation

When proposed, the relational model was an abstract mathematical concept,
without an existing physical implementation. In the second part of 1970s and
early 1980s, real-world realizations of this idea have been implemented, e.g.
System R [CAB+81] and Ingres [SHWK76]. These systems introduced multiple
concepts and designs that often can still be found in the existing relational
databases.

Section 3.1: Relational model 37

DSM representationNSM representationRelation

19

109 Walter 31 112

Trudy 27 113 Bob

Zoe

42 Charlie 35115

11429

Id

101

115

114

113

112

109

108

105

104

102

Name

Ivan

Peggy

Victor

Eve

Walter

Trudy

Bob

Zoe

Charlie

Alice 22

37

45

25

19

31

27

29

42

35

Age

101

115

114

113

112

109

108

105

104

102 Ivan

Peggy

Victor

Eve

Walter

Trudy

Bob

Zoe

Charlie

Alice 22

37

45

25

19

31

27

29

42

35

Age

101 Alice 22 102

Ivan 37 104 Peggy

45 105 Victor

25 108 Eve

Name

Page 2

Page 1 Id

Figure 3.1: Relational table and its representation in the N-ary storage model
(NSM) and the decomposed storage model (DSM)

3.1.1.1 Physical relation representation

The most common data representation in relational databases is to keep a re-
lation as a collection of rows, each corresponding to a tuple. These rows are
typically stored as records one after another in one table per relation, consisting
of disk pages, each storing multiple records. This representation, known as the
N-ary storage model (NSM), is presented in the central part of Figure 3.1. An
alternative representation is the decomposed storage model (DSM [CK85]) pre-
sented in the right-most part of Figure 3.1. Here, every attribute is stored as a
separate area on disk.

3.1.1.2 Query execution plans

To provide the functionality of the relational algebra in a physical world, data-
bases commonly include a set of physical operators, roughly corresponding with
their logical counterparts. Typically, it is not a one-to-one mapping, as the same
logical operator can be implemented in various ways. For example, a logical join
operator can be executed with a merge-join or a hash-join, depending on data
properties, available resources etc. Various operators are combined into a query
execution plan – a physical representation of a user query. A good overview of the
implementation techniques for the physical query plans is presented in [Gra93].
Within a query plan, typically two execution methods are used [SKS02,

Chapter 13.7]: pipelining and materialization. These two approaches are dis-
cussed in more detail in Sections 3.3 and 3.4.

38 Chapter 3: Databases on modern hardware

SELECT l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date ’1998-09-02’
GROUP BY l_returnflag,

l_linestatus
ORDER BY l_returnflag,

l_linestatus;

Figure 3.2: TPC-H Query 1

3.1.1.3 Query language

DBMSs typically hide the imperative nature of the relational algebra by pro-
viding some high-level language that is converted into the actual query plan.
The de-facto standard for the relational databases is Structured Query Language
(SQL) [CB74, EKM+04] that expresses the queries in a declarative syntax close
to the natural English language. For example, the relational query from Sec-
tion 3.1 can be expressed with this SQL statement:

SELECT Id, Name, Age, (Age - 30) * 50 AS Bonus
FROM People
WHERE Age > 30

Figure 3.2 presents a more complicated SQL example: Query 1 from the
TPC-H benchmark that is often used as an example throughout this thesis.

3.2 DBMS architecture

The components of a typical relational DBMS are presented in Figure 3.3.
In fact, the architectures of state-of-the-art DBMS products are significantly
more complex and often include dozens of cooperating modules. Still, generally,
database consists of the following components:

Section 3.2: DBMS architecture 39

Client application

client query
result
query

DBMS

(SQL)

normalized form

optimized query

data
requests

Query rewriter

Query parser

parse tree

data

Query optimizer

Query executor

Buffer manager / storage

Project
Bonus = (Age − 30) * 50

Select
Age > 30

Scan
People

Id, Name, Age,

User
tuple

tuple

tuplenext()

next()

next()

Figure 3.3: A simplified architecture
of a DBMS

Figure 3.4: An operator tree for a
simple SQL query in a tuple-at-a-
time execution model

client application – before a query enters a DBMS, it needs to be provided by
a client. A query is typically expressed in a high-level query language, e.g.
SQL. A client can connect to a DBMS directly, using some DBMS-specific
low-level communication protocols, or by exploiting a general-purpose
high-level connection infrastructure, such as ODBC [Mic] or JDBC [Suna].
Furthermore, additional components can be used between the actual appli-
cation and the DBMS, for example specialized utilities for load balancing
or query result caching.

query parser – the syntax of the client query is analyzed, and a parse tree is
built, providing internal representation of a query.

query rewriter – this component checks the parse tree for its semantic cor-
rectness (e.g. existence of used table names or proper access rights) and
converts it into some normalized form. It is typically a tree of logical op-
erations, often close to the relational algebra. This module may perform
some additional tasks, for example expansion of user-defined views into
the underlying queries.

query optimizer – the major task of this component is to rearrange the query
tree in such a way that the expected execution time of the result query is

40 Chapter 3: Databases on modern hardware

minimal. It also prepares the physical query plan, with the logical opera-
tions (e.g. a generic join) replaced with their physical counterparts (e.g. a
hash-join). This module is usually highly complex, and has a tremendous
impact on the total query execution time. For example, a wrong order of
operations or a bad choice of an operator can result in a computational
blow-up at some stage of processing. For such a bad plan, even the fastest
query executor cannot process a given plan in satisfying time.

query executor – is the core component of query processing. It accepts a
physical query plan, and performs all specified processing steps on data
that it receives from the storage layer. The computed results are returned
to the client.

buffer manager / storage – takes care of storing data on persistent media,
accessing it and buffering it in memory. Typically, it also takes care of
handling updates, managing transactions, performing disaster recovery,
logging, locking, and more. However, these issues are not the focus of this
thesis, and we only concentrate on data storage and access.

Of these components, two are of most importance for this thesis: query ex-
ecutor and storage layer. In the next two sections we discuss two approaches
of implementing the query execution layer, based on two different principles:
pipelining and materializing [SKS02, Chapter 13.7]. First, in Section 3.3 we an-
alyze a typical query processor using a pipelined iterator interface and working
on top of the N-ary tuple storage. Then, in Section 3.4 we discuss the archi-
tecture of MonetDB, concentrating on its fully-materialized in-memory query
execution model and the use of column-based storage.

3.3 Tuple-at-a-time iterator model

Most database engines internally use the iterator model for their query exe-
cution layers [Gra94]. In this model, a query plan consists of a set of relational
operators, connected in some topology. Typically, it is a tree, but operators can
also compose a direct acyclic graph (e.g. in parallel execution plans) or even
a graph with cycles [Waa02]. Operators communicate in a “pipeline” manner
following the interface based on three major functions: open() initializes the op-
erator and its children, next() makes operator return the next part of data to the
caller, and finally close() finishes processing and frees the resources. Typically,

Section 3.3: Tuple-at-a-time iterator model 41

in the next() call, a single tuple is returned, using the NSM-based records. This
“pull-based” model is known as tuple-at-a-time iterator model.
Figure 3.4 presents an example of an operator tree for the query from Sec-

tion 3.1. The query execution proceeds as follows. First, the user (client applica-
tion etc.) asks the top operator (Project) for the next result tuple. Project asks
its child (Select) and it in turns asks its child (Scan). Scan retrieves the next
tuple from the table, and sends it back to Select. Select checks if the tuple passes
its predicate and, if so, sends it back to Project. If not, it asks Scan for the next
tuple. Project, for each input tuple, computes an additional column and returns
a new tuple to the user. When Scan determines that there are no more tuples
in the underlying relation, it sends the end-of-stream identifier throughout the
pipeline, which finishes the processing.
To better demonstrate what is happening within an operator, this is a pseu-

docode for the next() function in the Select operator:

Tuple Select::next() {
while (true) {
Tuple candidate = child->next();
if (candidate == EndOfStream)
return EndOfStream;

if (condition->check(candidate))
return candidate;

}
}

3.3.1 Tuple-at-a-time model performance characteristics

The tuple-at-a-time approach is elegant, simple to understand, and relatively
easy to implement. Performance-wise the most important characteristics of this
model is that for every tuple there are multiple function calls performed. In our
example, these include at least multiple next() calls, and calls to evaluate the
condition in Select as well as to compute a new attribute value in Project. As
a result, the state of each operator, as well as the code used by it, are accessed
frequently. These properties result in a set of important performance drawbacks
in a number of areas:

CPU instruction cache – if the query plan consists of many different types of
operators, their combined instruction-memory footprint can be too large
for the CPU I-cache to hold. Since the CPU changes its context between
operators every tuple, if the I-cache is not large enough, cache-misses might
occur every time a given part of code is accessed.

42 Chapter 3: Databases on modern hardware

plan-data cache – each instance of a relational operator consumes some mem-
ory to keep its state, necessary for executing the next() call. With complex
plans (even consisting of very few types of operators), or operators with
large state, this data might not fit in the CPU D-cache, resulting in cache-
misses.

function call overhead – the communication between operators, as well as
many data operations are performed by calling appropriate functions or
object methods. Per each operator iteration, multiple such calls are per-
formed. Since a cost of performing a function call, in particular to a
dynamically-dispatched (e.g. data-dependent) function, can be in range
of tens of CPU cycles, especially when multiple parameters are passed,
this overhead can be significant.

tuple manipulation – since tuples are organized as records of attributes, get-
ting a particular value often requires extra steps to determine its position
in the record. This record navigation is often repeated for each tuple.

superscalar CPUs utilization – as discussed in Section 2.1.4, modern CPUs
have multiple execution units that allow performing multiple operations
at the same time. Database engines, performing the same operations for a
large number of tuples, seem naturally suited to exploit this feature. Un-
fortunately, with the tuple-at-a-time approach in each function call only
a single operation on a single tuple is performed, not exposing enough
work to keep multiple execution units busy. Also, heavy branching and
multiple function cause frequent stalls in the pipeline. As a result, typi-
cal database code achieves very low instructions-per-cycle (IPC) perfor-
mance [ADHW99].

compiler optimizations – many compile-time optimizations are impossible
with the interpreted tuple-at-a-time approach. For example, due to the
dynamic method dispatching, function inlining cannot be applied. Also,
processing a single value at a time does not allow application of many
performance-critical loop optimizations including loop unrolling, loop pipe-
lining, strength-reduction and automatic SIMDization.

data volume – the commonly used N-ary tuple representation requires all ta-
ble attributes to be stored in memory and transferred from disk. This
might result in a waste of both memory and disk bandwidth, as well as
the CPU cache, if a query does not use all attributes. Additionally, records

Section 3.3: Tuple-at-a-time iterator model 43

cumm. excl. calls avg. avg. function
time time instr. IPC name
(sec) (sec) / call

11.9 11.9 846M 6 0.64 ut fold ulint pair
20.4 8.5 0.15M 27K 0.71 ut fold binary
26.2 5.8 77M 37 0.85 memcpy
29.3 3.1 23M 64 0.88 Item sum sum::update field
32.3 3.0 6M 247 0.83 row search for mysql
35.2 2.9 17M 79 0.70 Item sum avg::update field
37.8 2.6 108M 11 0.60 rec get bit field 1
40.3 2.5 6M 213 0.61 row sel store mysql rec
42.7 2.4 48M 25 0.52 rec get nth field
45.1 2.4 60 19M 0.69 ha print info
47.5 2.4 5.9M 195 1.08 end update
49.6 2.1 11M 89 0.98 field conv
51.6 2.0 5.9M 16 0.77 Field float::val real
53.4 1.8 5.9M 14 1.07 Item field::val
54.9 1.5 42M 17 0.51 row sel field store in mysql..
56.3 1.4 36M 18 0.76 buf frame align
57.6 1.3 17M 38 0.80 Item func mul::val
59.0 1.4 25M 25 0.62 pthread mutex unlock
60.2 1.2 206M 2 0.75 hash get nth cell
61.4 1.2 25M 21 0.65 mutex test and set
62.4 1.0 102M 4 0.62 rec get 1byte offs flag
63.4 1.0 53M 9 0.58 rec 1 get field start offs
64.3 0.9 42M 11 0.65 rec get nth field extern bit
65.3 1.0 11M 38 0.80 Item func minus::val
65.8 0.5 5.9M 38 0.80 Item func plus::val

Table 3.1: MySQL gprof trace of TPC-H Q1: +,-,*,SUM,AVG takes <10%, low
IPC of 0.7 (from [BZN05])

representing tuples typically include some meta-data, leading to subopti-
mal disk usage.

The above properties of the iterator model lead to two major inefficiencies in
the traditional database performance. We demonstrate them with an experiment
in which TPC-H Query 1 is executed on MySQL. This query scans a single rela-
tion consisting of a large number of tuples, performs some simple computations,
and finally generates a few aggregate values. The query plan is very simple, and
does not include any sophisticated operators such as joins or disk-spilling aggre-
gations. In this situation, one could expect that most of the processing time is
spent in data-manipulating functions. Table 3.1, presenting a detailed profiling
of the benchmark, shows otherwise. Functions performing the actual operations

44 Chapter 3: Databases on modern hardware

on data (in bold) consume less than 10% of total time. This demonstrates the
first inefficiency – there is a lot of instructions related to query interpretation
and tuple manipulation, causing a high instructions-per-tuple ratio. Addition-
ally, the instructions-per-cycle factor is significantly lower than achievable on
super-scalar processors. This is caused by the inability of the tuple-at-a-time
algorithms to exploit multiple processing units, SIMD instructions and many of
the crucial compiler optimizations. These two inefficiencies combined result in
a very high cycles-per-tuple ratio which, even for simple operations, can reach
hundreds or thousands of CPU cycles.
The tuple-at-a-time model also brings challenges in the areas of program

profiling and optimization. This is caused by the fact that most of the CPU
time is spread over a relatively large volume of code, including data processing
functions, operator methods, tuple navigation etc. In this situation, it is hard to
identify performance bottlenecks and hence introduce significant performance
optimizations.
While the pipelined model often suffers in raw processing performance, it

has a major benefit over the materializing approach discussed in the following
section – scalability. Since in each next() call only a single tuple is passed, as long
as there are no large intermediate results inside the query plan, the pipelined
model can efficiently process arbitrarily large volumes of data. Maintaining this
property is one of the crucial design goals of the new iterator model presented
in Section 4.2.

3.4 Column-at-a-time execution in MonetDB

The MonetDB system [Bon02] was designed specifically for analytical data
processing. In these scenarios, the query load typically consists of a relatively
small number of queries, but the queries are complex and process large amounts
of data. To achieve high performance in such scenarios, MonetDB proposed
alternative solutions in various layers of the database system.
The crucial difference between MonetDB and traditional systems is in the

way data is processed. Instead of using the N-ary tuple model, MonetDB follows
the ideas presented in the decomposition storage model (DSM) [CK85] and uses
an algebra entirely based on Binary Association Tables (BATs) [BK99]. This
influences the storage layer, query language and the execution layer implemen-
tation.
In the storage layer, BATs are simply two-column tables, where head and tail

Section 3.4: Column-at-a-time execution in MonetDB 45

5

8

9

1

2

5

8

9

(int)

350

750

50

600

250

(oid)
sel_bonus

(int)

7

15

1

12

5

(oid)
tmp

1

2

5

8

9

1

2

5

8

9

22

37

45

25

19

31

27

29

42

35

(void) (int)

Ivan

Peggy

Victor

Eve

Walter

Trudy

Bob

Zoe

Charlie

Alice

(void) (str)

101

115

114

113

112

109

108

105

104

102

(void) (int)

(int)

102

104

109

114

115

(oid)

(oid)

Ivan

Peggy

Walter

Zoe

Charlie

(str)

people_id people_name people_age

sel_id

sel_name

mirror.join()

select(30,nil)

[−](,30)

[*](50,)

mirror.join()

(int)

37

45

31

42

35

(oid)
sel_age

0

1

2

3

4

5

6

7

9

8

0

1

2

3

4

5

7

6

8

9 9

8

7

6

5

4

3

2

1

0

1

2

5

8

9

1

2

Figure 3.5: Execution of a simple SQL query (see Section 3.1.1.3) in the Mon-
etDB column-at-a-time execution model

columns can contain different data types, as presented in the left-most side of
Figure 3.5. A similar data organization has been proposed before in the context
of database machines, specifically for vector processors [TKK+88]. Different
attributes of the same tuple in an N-ary table are connected by using the value
of object-id (oid) column, equivalent to the surrogate columns in [CK85]. For
persistent data, this column typically contains a continuously increasing dense
sequence of numbers, and is stored using a special virtual-oid (void) column
type [BK99] that is not physically materialized. As a result, a BAT is often
stored using a single column. For fixed-width data this format is equivalent to
a simple data array. For variable-width types the storage is separated into two
elements: a heap containing the actual data, and a fixed-width array of per-tuple
positions in the heap.

The column-based approach in the storage layer has a significant impact on
the I/O performance as well as the memory consumption. Since only columns
that are actually used by a given query are fetched from disk, the volume of the
transferred data becomes a fraction of what a system based on the N-ary storage
would use. This is especially important with tables having a large number of
columns, as is the case e.g. in data mining applications.

46 Chapter 3: Databases on modern hardware

In the processing layer, MonetDB implements its binary algebra using the
column-at-a-time approach: every operator is executed at once for all the tuples
in the input columns, and its output is fully materialized as a set of columns.
As a result, the query plan is not a pipeline of operators, but instead a series of
sequentially executing statements, consuming and producing columns of data.
For example, the execution of the example SQL query from Section 3.1.1.3 in
Monet Interpreter Language (MIL) [BK99], is as follows:

sel_age := people_age.select(30, nil);
sel_id := sel_age.mirror().join(people_age);
sel_name := sel_age.mirror().join(people_name);
tmp := [-](sel_age, 30);
sel_bonus := [*](50, tmp);

The data flow for this query plan is presented in Figure 3.5. The resulting sel *
BATs constitute the final result. A more complex MIL example is presented in
the left-most column of Figure 3.6, which shows the MIL code for the TPC-H
Query 1.
The implementation of MonetDB operators is based on a principle of no

degree of freedom. For every combination of task (e.g. select, sort), input data
types (e.g. integer, string) and properties (e.g. sorted, nullable) a single special-
ized routine is created. Note that this approach would not be feasible in the
N-ary model, as the number of possible combinations is too high, but it is main-
tainable in the binary model. When an operator is called, the version matching
the input data types and properties is chosen and executed. Since the operator
input is typically stored directly as arrays of values, and the entire input is
processed at once, many operations boil down to simple loops over arrays. For
example, a simplified code for a routine that selects from a [void,int] BAT
identifiers of tuples bigger than a given constant and produces an [oid,void]
result would look as follows:

int uselect_bt_void_int_bat_int_const(oid *output, int *input, int value, int size) {
oid i;
int j = 0;
for (i = 0; i < size; i++)
if (input[i] > value)
output[j++] = i;

return j;
}

Naturally, it is infeasible to manually implement and maintain all possible com-
binations of operators. MonetDB uses aggressive macro expansion using the Mx
tool [KSvdBB96] that converts operator templates into dozens or even hundreds

Section 3.4: Column-at-a-time execution in MonetDB 47

MIL statement SF=1 SF=0.001
data result time band- time band-
volume size (ms) width (usec) width
(MB) (tuples) (MB/s) (MB/s)

s0 := select(l shipdate).mark 45 5.9M 127 352 150 305
s1 := join(s0,l returnflag) 68 5.9M 134 505 113 608
s2 := join(s0,l linestatus) 68 5.9M 134 506 113 608
s3 := join(s0,l extprice) 114 5.9M 235 483 129 887
s4 := join(s0,l discount) 114 5.9M 233 488 130 881
s5 := join(s0,l tax) 114 5.9M 232 489 127 901
s6 := join(s0,l quantity) 68 5.9M 134 507 104 660
s7 := group(s1) 45 5.9M 290 155 324 141
s8 := group(s7,s2) 45 5.9M 329 136 368 124
s9 := unique(s8.mirror) 0 4 0 0 0 0
r0 := [+](1.0,s5) 91 5.9M 206 440 60 1527
r1 := [-](1.0,s4) 91 5.9M 210 432 51 1796
r2 := [*](s3,r1) 137 5.9M 274 498 83 1655
r3 := [*](s12,r0) 137 5.9M 274 499 84 1653
r4 := {sum}(r3,s8,s9) 45 4 165 271 121 378
r5 := {sum}(r2,s8,s9) 45 4 165 271 125 366
r6 := {sum}(s3,s8,s9) 45 4 163 275 128 357
r7 := {sum}(s4,s8,s9) 45 4 163 275 128 357
r8 := {sum}(s6,s8,s9) 22 4 144 151 107 214
r9 := {count}(s7,s8,s9) 22 4 112 196 145 157
TOTAL / average: 1361 3724 365 2327 584

(MB) (ms) (MB/s) (usec) (MB/s)

Figure 3.6: MIL code and performance profile of the TPC-H Query 1 (see Fig-
ure 3.2) running on MonetDB, scale factors 1 and 0.001 (from [BZN05])

of versions differing with input data types, properties etc. While this approach
significantly increases the program size, it has highly useful properties influenc-
ing the execution performance:

instruction cache – Even though the overall code size is large, the cost of
loading a given function is amortized over the entire input of an operator,
making it negligible in most cases.

plan-data cache – Since only one operator is executed at any given time
(within a single process), its state can make full use of the CPU cache.
MonetDB was a platform used for some pioneering work in the area of

48 Chapter 3: Databases on modern hardware

cache-conscious databases, and provides a number of cache-conscious al-
gorithms [MBK02, MBNK04].

function call overhead – For most operators, there are no per-tuple function
calls happening, making the function call overhead negligible.

tuple manipulation – The data is typically stored as contiguous set of tuples,
equivalent to e.g. C arrays. As a result, value access is direct, and does
not require any interpretation.

superscalar CPUs utilization – The code inside the MonetDB operators
usually has no function calls, has significantly fewer branches, and as a
result works much better on modern CPUs. However, expensive main
memory accesses often hinder the performance.

compiler optimizations – MonetDB operators code is simple, and many au-
tomatic compiler optimization techniques can be applied.

data volume – Since MonetDB uses columnar data representation, only the
used columns are being transferred from disk and stored in memory. Ad-
ditionally, since data is packed in dense arrays, the overhead of record
structure present in NSM is avoided, resulting in smaller storage require-
ments.

Thanks to the above properties, the MonetDB execution model reduces the
need of the expensive query plan interpretation and makes the CPU spend most
of the time on the actual data processing. With the CPU-efficient operator code,
this allows to achieve low cycles-per-tuple cost for large-volume data processing.
The materializing operator model has also benefits in the area of extensibil-

ity, profiling and query optimization. Since operators are fully independent, and
internally typically perform simple array-processing tasks, new operators can
be easily added. Also, query execution time is clearly divided into a sequence of
consecutively executing steps. This allows easy profiling and determining pos-
sible optimization areas. Finally, before executing each operator, there is more
information available than in the tuple-at-a-time model (e.g. the exact relation
cardinality), exposing multiple runtime optimization opportunities.
While MonetDB in many areas demonstrates a significant performance im-

provement over the traditional tuple-at-a-time strategy, it also suffers from a
number of problems. The most important one is related to the intermediate re-
sult materialization. Even during in-memory processing, writing the results by

Section 3.4: Column-at-a-time execution in MonetDB 49

each operator can cause high memory traffic, making the operators not CPU-
bound, but memory-bound. This can be observed e.g. by comparing the TPC-H
Query 1 results for scale factors 1 (1GB) and 0.001 (1MB) presented in Fig-
ure 3.6 1. For SF=0.001 the data is small enough to fit the intermediate results
in the CPU cache, and as a result, the per-operator bandwidth can be even
3 times higher than the memory-bound SF=1 case, and the overall execution
is almost two times faster (2327 usec on a 1MB dataset versus 3724 ms on a
1GB dataset). The impact of the result materialization is even more visible on
multi-CPU machines, where the memory bandwidth is shared among different
CPUs [Zuk02]. Avoiding this problem is one of the crucial goals of the execution
model introduced in Section 4.2.
The overhead of the intermediate result materialization is additionally in-

creased in MonetDB by its use of a column-at-a-time algebra. With this ap-
proach, tasks involving multiple columns often become complicated. For ex-
ample, an aggregation with multi-attribute keys needs to be decomposed into
a number of steps. Similar problems occur in multi-attribute joins or sorting.
Binary algebra also enforces attribute post-projection [MBNK04] – after an op-
eration, all attributes “carried” through it need to be materialized, as is the
case with the id and name columns in Figure 3.5. In all these cases, additional
computational steps causes extra data materialization. These MonetDB prob-
lems suggest that, while the columnar storage is good for reducing the I/O cost
and for allowing high processing performance, query plans should be expressed
using the N-ary approach.

3.4.1 Breaking the column-at-a-time model

The high memory-bandwidth problem of MonetDB has been analyzed in [Zuk02]
that focused on the in-memory execution on SMP machines. In such scenarios,
the computational benefits of parallelizing queries are often seriously hindered
by the relatively poor per-CPU memory bandwidth. In contrast, since cache
memories are often dedicated to each CPU, the cost of accessing cache (assuming
no cache coherency protocol overheads) does not increase with multiple CPUs.
The imbalance between the main-memory and CPU-cache bandwidth, es-

pecially visible in the multi-CPU environments, has led to the idea of parti-
tioned execution [Zuk02, Section 4.3.3]. Here, instead of executing a sequence
of column-at-a-time statements, columns are broken into smaller slices, and the
operators execute on them in the pipelined fashion. With the slice size chosen

12005 results from [BZN05]

50 Chapter 3: Databases on modern hardware

such that the intermediate results fit in the CPU cache, in-memory material-
ization is avoided. As a result, performance is significantly improved, especially
during parallel execution. In single-CPU execution, the performance benefits
were relatively small, mostly due to the fact that the interpretation mechanisms
were implemented in the MIL language, which is relatively inefficient for script-
ing. With the slice size typically in range of a few hundreds or a few thousands
of tuples, the high overhead of MIL interpretation could not be well amortized.
While the performance improvement of partitioned execution was relatively

limited, this research has hinted that combining the high performance of column-
at-a-time operations with the pipelined execution strategy can both improve the
already high performance of MonetDB, as well as allow it to reduce its memory-
consumption related problems. This gave a motivation for the research presented
in the following chapters of this thesis.

3.5 Architecture-conscious database research

In the previous sections we have discussed two existing execution models
that are the base for the research presented in this thesis. This section broadens
the picture by presenting the research from the area of architecture-conscious
database systems. In this field, the performance of database systems on modern
hardware is analyzed and improved, both in terms of the modifications to the
discussed execution models, as well as new implementations of various data
processing tasks.

3.5.1 Analyzing database performance on modern hard-
ware

The detailed analysis of CPU performance on database workloads was first
performed by the computer-architecture community [MDO94, CB94, BGB98,
LBE+98, KPH+98]. In [MDO94] authors compared a few types of multi-user
commercial workloads, including TPC-A [Tra94] and TPC-C [Tra07] bench-
marks, simulating OLTP scenarios, with a set of numeric-intensive applications,
mostly from the area of scientific computing. One of the observations was that
the transaction-processing systems typically use significantly larger instruction
footprint, with most instructions executing a relatively small number of times.
This is related to the fact that these systems typically do not spend a lot of time
in tight loops, as is the case in e.g. numeric processing. This directly impacts the

Section 3.5: Architecture-conscious database research 51

L1 I-cache performance – the percentage of I-cache misses for TPC-A is a few
times higher than for scientific applications. Interestingly, for the L1 D-cache,
the results were opposite – multi-user applications suffered from a significantly
lower number of misses. For the L2 misses, the situation is slightly different –
transaction workloads not only suffer from significant number of I-cache misses,
but also D-cache misses are on a par with numeric workloads. Finally, it has
been observed that the multi-user workloads, due to their event-based nature,
spend a significant amount of time in the kernel space – 40% for TPC-A versus
7% for used non-database workload.
Similar experiments have been presented in [CB94], where the authors addi-

tionally analyze the performance of the sort operation, and provide more insight
into the exploitation of the superscalar nature of the Alpha AXP CPUs. This pa-
per demonstrates that already in 1994 transaction-processing workloads resulted
in significantly higher cycles-per-instruction (CPI), and made inefficient use of
the multi-pipeline architecture of the CPUs. Also, the impact of branch mis-
predictions has been demonstrated to be higher than in most numeric-intensive
problems. As a result, it has been shown that transaction-processing programs
can spend as little as 20% on actual computation, wasting rest of the time on
various stalls, comparing to 30% in sort, and 80% in the Linpack benchmark.
These problems have also been identified in [KPH+98], where authors confirm
OLTP problems with utilizing out-of-order execution, superscalar issues and
branch prediction.
A comparable analysis of the OLTP and decision-support systems (DSS)

workloads has been presented in [BGB98, LBE+98, ADHW99]. In [BGB98], the
authors demonstrate that the CPI of DSS scenarios is significantly better (factor
4) than in OLTP. Also, DSS systems have better code and data locality, result-
ing in significantly fewer cache misses. These results are confirmed in [LBE+98],
where authors present higher OLTP instructions footprint, and hence an in-
creased number of I-cache misses. Similar conclusions are drawn in [ADHW99],
where the authors identify L2 data-cache misses and L1 instruction-cache misses
as crucial for performance.
Interestingly, recent analysis of the large-scale OLTP experiments [SK06]

presents slightly different conclusions. On the Itanium platform, with the used
transaction load, the instruction-cache stalls only contributed to less than 10%
of the total time. On the other hand, data-cache misses, particularly expen-
sive L3 misses, consumed ca.60% of total time. These results show that the
exact characteristics of the performance highly depends on the used hardware
platform, system architecture and query loads.
While this collection of papers is not exhaustive, it demonstrates that the

52 Chapter 3: Databases on modern hardware

performance of database systems is far from optimal on modern hardware, es-
pecially comparing to numeric-intensive scientific programs. As a result, there is
an ongoing activity in the database research community to improve the database
architecture by addressing the most important performance problems.

3.5.2 Improving data-cache

Perhaps the most visible inefficiency of classical database algorithms is re-
lated to the suboptimal use of the hierarchical memory systems. The impact
of the non-uniform access cost has been identified quite early with a pioneering
work of Shatdal et al [SKN94]. While in 1994 the difference of the cache-access
and memory-access (2-4 cycles versus 15-25 cycles) was an order of magnitude
smaller than now, even then cache-conscious algorithms allowed up to 200%
performance improvement. Authors proposed a set of techniques that frequently
reoccur in the following research, and include: blocking – reuses chunks of data
that fit in the cache; partitioning – a variant of blocking, divides data into cache-
sized segments; key extraction – reduce the volume of processed data by using
only attributes relevant to the current operation; loop fusion – combine multi-
ple operations in a single pass over data to reduce memory traffic; clustering –
rearrange attributes to improve spatial data locality. An early example of using
some of these ideas has been presented in the AlphaSort [NBC+95] algorithm,
which minimized the number of cache misses. It was achieved by using cache-
sized data units with cache-friendly QuickSort [Hoa61], processing {key-prefix,
pointer} pairs instead of full records to allow more elements to fit in the cache,
and using a cache-friendly replacement-selection tree for merging the runs.
Improving the performance by cache-conscious data reorganization has been

proposed in [CHL99], where the authors rearrange elements of pointer-based
data structures to increase locality of references. Rao and Ross address similar
problem focusing on tree structures [RR99, RR00]. First, in [RR99], they suggest
organizing a tree in a read-only array, eliminating the need of storing data point-
ers. Internal nodes are chosen to fit the cache-line size, optimizing the number
of cache-line references, and highly-optimized in-node search routines are used
for faster lookup. This work is extended to update-enabled cache-sensitive B+

Trees (CSB+-Trees) [RR00], which modify the B+-Tree organization such that
all the children of a given node are stored contiguously. This reduces the volume
of data and hence the number of cache misses.
Vertical data representation in DSM [CK85], has been identified by Boncz

et al. [BMK99] to have beneficial impact on cache behavior of applications, due
to reduced memory traffic and an increased spatial locality. While this research

Section 3.5: Architecture-conscious database research 53

has been performed in scope of column-stores, Ailamaki et al. [ADHS01] took
this idea further, by proposing a hybrid data storage model, called PAX. In this
model, the layout of a disk page is modified to store the same attribute from
different tuples contiguously, like in DSM. PAX has the I/O characteristics of
NSM, and cache-characteristics of DSM, and has been shown to improve query
performance by as much as 48%. The data-morphing technique [HP03] identifies
the in-memory performance differences between DSM and NSM and generalizes
the PAX approach by dynamically dividing a relation into a set of vertical
partitions, stored in a PAX-like, mini-page based manner. In all these solutions
the model used for storage and for processing is the same. Clotho [SSS+04]
decouples these two issues by transparently choosing the storage model most
suited for the current workload.
Another approach to optimize cache-memory behavior has been proposed

in [ZR03b], where the accesses to nodes in tree-based data structures are buffered,
and tree-traversal operations are performed in bulk. This increases the temporal
locality, as the same cache-lines are used multiple times in one operation. As a
result, the throughput of the operations on both cache-conscious and traditional
tree-structures is significantly improved, at a cost of an increased response time
of single operations.
The early approaches on using the in-memory partitioned hash-join [SKN94]

has been extended in work of Boncz et al. [BMK99, MBK00, MBK02], This
research found the high-fanout partitioning necessary to split large data volumes
into cache-sized sub-relations to result in poor cache and TLB behavior. The
proposed multi-pass radix-cluster partitioning strategy eliminates this problem,
and while performing more work, results in a better overall performance. This
work also proposes optimizations to the partitioning code, as well as highly
accurate cost-models for choosing the best partitioning method and predicting
its performance. This work is further extended in [MBNK04], where authors
introduce a cache-friendly radix-decluster attribute post-projection algorithm.
Another approach to address the imbalance between the cache and mem-

ory latency is to use data prefetching. As discussed in Section 2.2.3, modern
CPUs provide both implicit and explicit cache prefetching capabilities. Explicit
prefetching has been suggested for the general problem of recursive, pointer-
chasing, data-structures [LM96, LM99]. In the database community, a series of
papers by Chen et al. [CGM01, CGMV02, CAGM04, CAGM05, CAGM07] dis-
cusses how these techniques can be applied to database operations. [CGM01]
presents how prefetching can be exploited to increase the width of the nodes
in a B+-trees without paying the latency cost of fetching the additional cache-
lines, resulting in a reduced tree-depth and hence lookup performance boost

54 Chapter 3: Databases on modern hardware

of up to 55%. Additionally, the authors discuss how prefetching can improve
range-scanning performance, where the performance gains can be as high as
a factor 8.7. This technique has been further extended to disk-resident frac-
tal prefetching B+ − Trees that use cache-conscious in-page tree organization
and processing for good performance, as well as I/O prefetching for improved
range scans. [CAGM04, CAGM07] discuss how group prefetching and software-
pipelined prefetching techniques can be applied when performing hash-join op-
eration on a set of tuples. These methods were shown to perform better than
cache-partitioning and also be more resistant to interference by other programs.
Memory prefetching has also been applied to optimize various data accesses in
the inspector join algorithm [CAGM05].
It is interesting to see that most of the techniques proposed for improv-

ing memory performance by using cache memory have a direct correspondence
with similar techniques for improving disk performance by using main mem-
ory: multi-pass partitioning is necessary e.g. for external hash-join with a high
number of partitions; disk prefetching is commonly applied for scans and index
lookups; reducing I/O volume with vertical storage is the major beneficial fea-
ture of column stores; and so on. This shows that the problems addressed by
the research presented in this section are relatively generic, and only particular
hardware constants slightly differ. Since the memory hierarchy continuously be-
comes more complex, it is possible that in the future similar approaches might
need to be applied at different levels of it. This observation gave birth to the area
of cache-oblivious algorithms [FLPR99, HL07], where the exact characteristics
of the hardware are ignored, and algorithms and data structures are designed to
maximize the spatial and temporal locality, and hence work well on any cache
configurations.

3.5.3 Improving instruction-cache

Instruction cache misses have been identified as a major problem for database
performance, especially for OLTP workloads [BGB98, LBE+98, ADHW99]. The
main reason for it is poor temporal locality of the accessed instructions – most
database systems change position in code very frequently, especially with tuple-
at-a-time processing.
Harizopoulos and Ailamaki [HA04] observed that while at a given moment

different concurrently running transactions typically use different parts of the
program, their overall code paths overlap significantly. To exploit this, they
suggest organizing multiple queries needing a particular operator into execution
teams, and evaluate this operator for all members of the team one after another.

Section 3.5: Architecture-conscious database research 55

This makes the queries share the instruction-cache, which significantly reduces
the number of misses, up to 96.7%. Additionally, better temporal locality of the
executed code increases the efficiency of branch predictor, allowing for reduction
of mispredicted branches by up to 64%. In the result, this technique has been
shown to provide an overall transaction-processing speedup in a live system of
up to 31%.
Zhou and Ross [ZR04] observed that the instruction-cache misses are also a

significant problem in analytical processing queries, even within a single query.
This happens when the instruction footprint of the entire query plan exceeds
the CPU I-cache size. To reduce this problem [ZR04] introduced a new Buffer
operator that saves the tuples coming from the child, and sends then to the
parent once the number of tuples reaches a given threshold. This effectively
decomposes a query plan into a set of partially-materializing sub-plans, and if
the buffering happens in the proper locations in the plan, each of the sub-plans
is small enough to fit in the I-cache. As a result, this method can reduce the
I-misses by 80% and improve the overall performance by 15%. This approach is
especially useful in OLAP queries, where the same operation is performed for
large number of tuples in one query.

3.5.4 Exploiting superscalar CPUs

Database systems have not only been identified to work sub-efficiently with
cache memories, but also have been shown to poorly utilize the superscalar
capabilities of modern CPUs [CB94, ADHW99]. This is especially visible in the
cycles-per-instruction (CPI) ratio, which for databases is typically in range of 1.2
1.8 for TPC-D benchmark and 2.5 to 4.5 for TPC-C benchmark [ADHW99]. For
comparison, modern CPUs can issue a few instructions per cycle, and optimized
programs can achieve a CPI of 0.5 or less. The high CPI of database loads can
be partially explained by instruction and data stalls, but other factors influence
it as well. One of them is the highly branching nature of the traditional tuple-
at-a-time model: for every tuple multiple comparisons (e.g. check for data types
or computation errors) and various function calls need to be performed. Also,
since there is only a single unit of computation at a time (a tuple), there are
relatively little independent instructions that can be executed in parallel.
Improving the performance by reducing the number of comparisons was pro-

posed in [Aga96], where authors propose the comparison-free radix-sort in place
of commonly applied, comparison-based quick-sort and merge-sort algorithms.
In [Ros02], Ross analyzed the impact of branch mispredictions when evaluating
selection conditions, and presented techniques to replace control-hazards result-

56 Chapter 3: Databases on modern hardware

ing from conditional branches with data-hazards that have smaller impact on
performance. The reduction of the number of function calls and branches is also
one of the effects of the block-oriented processing [PMAJ01].
Another related functionality of modern CPUs are the SIMD instructions. In

the database community, there have been relatively little research in this area.
In [ZR02], Zhou and Ross apply SIMD instructions to a subset of database
operations. The results show that with proper implementation, this method
can give speedup close to the number of elements SIMD instructions process,
or even higher, if SIMD instructions allow to reduce the number of branches.
In [Ros07] SIMD instructions are used to optimize the processing of the hash
tables. SIMD potential can also be exploited to improve parallel predicate eval-
uation, as presented in [JRSS08]. Finally, SIMD-processing is used heavily on
many alternative hardware platforms, discussed in Section 3.5.6.

3.5.5 Intra-CPU parallelism

For a long time parallel execution in databases has been exploiting inter-node
parallelism, using different machines, and intra-node parallelism, using multiple
CPUs in one machine. Recently, with the increased popularity of the SMT and
CMP architectures, intra-CPU parallelism becomes an important research area.
The first analysis of the SMT potential for database system was presented

in [LBE+98], where the SMT performance was modeled using database logs.
The experiments showed that with SMT significantly more instructions are is-
sued every cycle, and memory-access latencies can be tolerated to some extent.
As a result, the performance on 8-context SMT processor improved 3-fold for
OLTP and 1.5-fold for DSS. [ZCRS05] introduces two SMT-specific methods
of executing relational operators. In the bi-threaded implementation, the work
of an operator is distributed evenly among concurrently executing threads. In
the working-set version, the “helper thread” knows what data will be needed
by the “main thread” and preloads it in advance. Both strategies have been
evaluated in row-wise and column-wise record layouts, and shown up to ca. 20%
improvement over a standard, SMT-oblivious parallel algorithm.
The potential of CMP architectures for databases and the impact of vari-

ous CPU-architectural choices have been presented in [HPJ+07]. The authors
discussed two types of CMP designs: complex wide-issue, out-of-order, deep-
pipelined fat-camp (FC) chips, and simple in-order, multi-threaded, simple-
pipelined lean-camp (LC) chips. The results show that looking at the query
response times LC can be worse by up to 70% in DSS loads and up to 12%
in OLTP loads. Still, in multi-query saturated scenarios, LC chips can achieve

Section 3.5: Architecture-conscious database research 57

up to 70% higher overall system throughput. This paper also analyzes how the
growing L2 cache sizes increase the L1-hit times, and as a result can have detri-
mental effect on the overall system performance.
The technical challenges of exploiting CMP machines have been investigated

in [CRG07] and [CR07]. In [CRG07] authors propose a parallel buffer struc-
ture that enables sharing input and output between the concurrently working
operators, providing load balancing at the same time. This work is continued
in [CR07], where various parallel aggregation algorithms are proposed for the
UltraSPARC T1 chip. The results show that the new architectures require new
algorithm designs that make good use of shared L2 cache and exploit available
atomic instructions to reduce the need of locking.

3.5.6 Alternative hardware platforms

After the unsuccessful attempts of creating database-specialized hardware
in the field of database machines (e.g. [AvdBF+92]), research in the high-
performance database processing has been focused on exploiting the traditional
disk–memory–CPU data flow path and CPU-based processing. However, recent
technology developments result in computer architectures where the compu-
tational capabilities of a machine are divided between more than one type of
devices, resulting in research targeting completely new hardware platforms.
The most visible example of shifting processing to an alternative hardware

are graphics processing units (GPUs, see Section 2.1.7.3). In [GLW+04] Govin-
daraju et al. proposed GPU-based implementations of a set of database oper-
ations, including predicate evaluation and aggregations. The used GPU pro-
cessing model is significantly different from traditional CPUs, as it depends
heavily on SIMD instructions and cannot efficiently perform random memory
accesses. This makes the implementation of various database operations chal-
lenging. Still, the presented performance improvement of 2–4 times suggests a
huge computational potential of GPUs, as demonstrated in further research on
sorting [GGKM06] and joins [HYF+07]. GPUTeraSort [GGKM06] is a GPU-
based sorting algorithm that provided the top sorting performance in the Pen-
nySort benchmark [NBC+95]. The comparison of CPU-based versus GPU-based
join algorithm presented in [HYF+07] shows that also for this operation GPUs
can provide order of 2-20 improvement. Combining these standalone techniques
into a coherent GPU-based system has been suggested in the GPUQP sys-
tem [FHL+07]. The rapid improvements in the GPU technology, in terms of both
performance as well as programming flexibility (e.g. with the recent NVIDIA

58 Chapter 3: Databases on modern hardware

CUDA project [NVI08]), suggests that this approach might become increasingly
important in the future of high-performance database systems.
Other alternative hardware architectures have also been used as platforms

for database processing. In [GAHF05] a set of relational operators have been
evaluated on an Intel IXP2400 network processor with 8 simple low-frequency
microengines, each supporting 8 thread contexts, and using an explicitly con-
trolled memory architecture. While exploiting this architecture introduces var-
ious implementation challenges, the results show that the high on-chip paral-
lelism allows from 1.9 to over 3 times improvement over a general-purpose CPU.
A similar hardware architecture is present in the STI Cell chip [IBM07] that
uses 1 general-purpose PPU core and 8 SIMD-specialized SPU cores with a
different ISA and no cache. Full utilization of these specialized cores often re-
quires careful algorithm redesign. This has been presented in [Ros07], where
Ross demonstrated how a different hash structure results in a 10 times perfor-
mance improvement. Similarly, in [GBY07] and [GYB07] Gedik et al. presented
that properly engineered algorithms on Cell can provide the performance im-
provement of a factor 4 for sorting (using 16 SPUs) and a factor 8.3 for stream
joins, comparing to a dual Intel Xeon machine.
Another hardware area in which database technology is being used are em-

bedded devices. For example, in [BBPV00] the authors analyze the challenges
of implementing a database on a smartcard. These devices have significantly
different hardware characteristics: slow writes, very little memory etc. As a re-
sult, the proposed PicoDBMS system needs to introduce new ideas in the areas
of data organization (optimizing for data compactness) and query execution
(processing with limited RAM).

3.5.7 Analyzing and improving database I/O performance

While most databases follow the traditional NSM data storage format, there
has been a substantial amount of research investigating other solutions. For
example, NSM is known to have poor performance for scan-intensive applica-
tions, where only a subset of relation attributes is accessed. To improve this,
the decomposition storage model (DSM) has been proposed [CK85], where all
attributes are stored in separate files, and only the used attributes are scanned.
This format is also known as column storage. Originally, DSM introduced the
idea of an extra surrogate column, containing key values used to identify tu-
ples in different files. Modern column stores do not require such a column,
and use the natural order (possibly involving compression) to reconstruct tu-
ples [SAB+05, ZR03a, BZN05]. However, DSM introduces a need to access multi-

Section 3.5: Architecture-conscious database research 59

ple disk locations if a single tuple needs to be accessed, which can be a significant
problem for sparse lookups and updates – this problem is absent in NSM.
The analysis of NSM and DSM presented in [HLAM06] has shown that

DSM can provide a performance advantage for queries reading only a relatively
small number of attributes (up to ca. 30% with settings used in the paper), and
NSM is better for queries reading a large fraction of the table attributes. These
results are somewhat surprising, as, using large enough I/O units (achieved
in [HLAM06] with prefetching), the I/O cost of the operations should be pro-
portional to the width of the scanned attributes, making DSM beneficial for
all scans accessing a subset of columns. The reason for the low tuple width
percentage at which NSM becomes beneficial in [HLAM06] is that both stor-
age models are executing as a data source for an N-ary execution model. For
the DSM model, this results in the tuple-reconstruction phase consuming extra
CPU time.
The different characteristics of DSM and NSM resulted in a substantial num-

ber of approaches that combine different features of these two models. The PAX
storage model [ADHS01] and the data morphing technique [HP03] discuss the
in-memory properties and both models, and propose hybrid solutions (see Sec-
tion 3.5.2). The fractured-mirrors approach [RDS02] suggests keeping two copies
of data on two disks, like in RAID-1 [PGK88], but storing one copy in NSM and
another in DSM. This allows using the best model depending on the task, as well
as combining both mirrors in a single query for even better performance. The
multi-resolution block storage model (MBSM) [ZR03a] investigates the physical
placement of the DSM-based data. In this approach, the good scan performance
of DSM is preserved, while the cost of tuple reconstruction is reduced, since
values of different attributes from the same tuple are stored closer on disk than
in the naive DSM implementation.
A series of papers discusses the “five-minute rule” [GP87, GG97, Gra07],

which says that if an item is accessed roughly every five minutes, it should
be main-memory resident for good cost efficiency. Still, the page size at which
this break-even interval is applicable continuously increases (1KB in 1987, 8KB
in 1997, 64KB in 2007). This trend is caused by the imbalance between the
improvements in disk bandwidth and latency.
Another research direction in the I/O optimization area is related to the

increasing popularity of solid-state storage devices (see Section 2.3.3). Two ma-
jor features of these systems are typically analyzed: low random-read latency,
and the performance difference between slow general updates and fast 1-to-0
updates. Graefe [Gra07] not only revisits the RAM-disk five-minute rule, but
also discusses how low flash latency introduces similar rules for RAM-flash and

60 Chapter 3: Databases on modern hardware

flash-disk transfers. Shah et al [SHWG08] investigate a new join algorithm that
depends more than traditional approaches on random accesses to disk, effi-
ciently supported by flash. Ross [Ros08] presents a number of algorithms tuned
for “write-once-then-erase” nature of flash device. This work is related to the
previous research on write-only storage systems [Mai82, RS82], but differs due
to the “erase” functionality of flash.
While MEMS devices (see Section 2.3.4) are not yet publicly available, they

have been already investigated for database applications. In [YAA03] authors
exploit the two-dimensional nature of these devices, and propose a storage model
mapping two-dimensional relational tables on these. In related work, Schlosser
et al. [SSAG03] demonstrate how the inherent MEMS parallelism can be ex-
ploited to provide efficient execution of both row-oriented and column-oriented
requests.

3.6 Conclusions

This chapter presented an overview of the database technology, concentrating
on the differences between the traditional tuple-at-a-time and the MonetDB
column-at-a-time processing model. Both architectures provide a unique set of
benefits and problems. Additionally, a set of hardware-related database opti-
mization techniques has been discussed. Combining the best elements from all
these areas is the goal of the new approach to the query execution, proposed in
the next chapter.

Chapter 4

MonetDB/X100 overview

The analysis of database architectures presented in the previous chapter has
shown how existing execution models fail to fully exploit the performance po-
tential of modern computers on all layers of the hardware stack: super-scalar
CPUs, cache memories, main memory and disk. This motivates the research on
a new database architecture presented in this chapter.
MonetDB/X100 is a prototype query processing engine that allows us to

investigate new techniques in the field of efficient data processing for data-
intensive applications. The techniques introduced in this engine focus on the
areas of CPU-efficient execution and bandwidth-optimized storage, correspond-
ing directly with the main thesis of this book, defined in Chapter 1:

With the vectorized execution model database systems can min-
imize the instructions-per-tuple cost on modern CPUs and achieve
high in-memory performance, but bandwidth-optimizing improve-
ments in the storage layer are required to scale this performance to
disk-based datasets.

Vectorized execution model. In the execution layer, we try to overcome the
inefficiencies of the existing approaches described in Chapter 3. The tuple-at-a-
time pipelined model requires expensive query-plan interpretation, resulting in
a high instructions-per-tuple number. Additionally, this model is unfriendly for
modern CPUs, causing poor utilization of super-scalar CPU features and cache
memories, resulting in poor cycles-per-instruction ratios. The bulk-processing
model of MonetDB overcomes these problems, and achieves high CPU efficiency.
However, this comes at a cost of intermediate result materialization, hindering

61

62 Chapter 4: MonetDB/X100 overview

the overall performance and limiting scalability. As a result, both models, espe-
cially the tuple-at-a-time one, can suffer from a high cycles-per-tuple cost during
in-memory processing. In Section 4.2, we introduce a new vectorized in-cache
execution model that combines the best features of the tuple-at-a-time model
and bulk processing, providing performance often orders of magnitude higher
than the existing solutions.
Bandwidth improvements. In the storage layer, systems following the NSM
approach result in suboptimal exploitation of the disk bandwidth and avail-
able buffer memory. Moreover, even for data-intensive applications, databases
often rely heavily on random-access methods that require many disk arms per
CPU-core to provide sufficient data delivery rates, leading to installations with
hundreds of disks even for small data warehouses [ZHNB06]. This approach is
unsustainable due to the imbalance in the evolution of hard disk latency and
bandwidth, as discussed in Chapter 2. Section 4.3 proposes an alternative ap-
proach, where data-intensive tasks are implemented using mostly scan-based
methods, and presents ColumnBM – a new storage system designed for this
type of processing. While this system reduces the bandwidth requirements by
using column-based storage, providing enough data for the highly efficient ex-
ecution layer is still an important problem, especially since fast improvements
in the CPU technology allow more and more queries to be executing at the
same time. As a result, further bandwidth-improving optimizations are neces-
sary, and ColumnBM introduces two such techniques: lightweight compression
and cooperative scans.
This chapter presents the major features of the proposed architecture, and

serves as a foundation for detailed discussion of the key introduced techniques,
presented further in Chapters 5, 6 and 7.

4.1 MonetDB/X100 architecture

Two major design goals of MonetDB/X100 is to (i) execute high-volume queries
at high CPU efficiency, and (ii) scale this efficiency to large, disk-resident data
volumes. To achieve these goals, MonetDB/X100 fights performance bottlenecks
throughout the entire computer architecture, as visualized in Figure 4.1:

CPU To avoid the overhead present in the tuple-at-a-time model, MonetDB/X100
follows the bulk-processing idea of MonetDB. It performs all operations
on data using simple primitive functions that operate on multiple values
in one call (see Section 4.2.1.3). This reduces the number of function calls,

Section 4.1: MonetDB/X100 architecture 63

. . . Query tree . . .

Decompression

memory

selection
vector

X100
execution
engine

vat_price

Select

Project

selection
vector

shipdate returnflag extprice

returnflag sum_vat_price

the cache
vectors fit in

Aggregate

Scan

vectors
contain multiple
values of a single
attribute

primitives
process entire
vectors at a time

operators
process sets
of tuples
represented as
aligned vectors

returnflagshipdate

Scan
extprice

ColumnBM

in DSM
data

Disk Disk

1998−09−02

1.19

CPU

Cache

Main

Storage

Network

hash table maintenance aggr_sum_flt_col

map_hash_chr_col

map_mul_flt_val_flt_col

select_le_date_col_date_val

3

6

4

2

4

4

5

3

1

2

7

7

1

3
6

5

2 3

1

Figure 4.1: MonetDB/X100: architecture overview (left) and the query execution
layer (right)

improving the instructions-per-tuple ratio and increasing the code local-
ity. Additionally, primitives typically consist of simple loops over multiple
input values. This exposes multiple compiler-level optimization opportu-
nities, and allows efficient execution on super-scalar CPUs.

Cache MonetDB/X100 avoids the intermediate result materialization overhead of
MonetDB by combining the bulk-processing approach with the pipelined
iterator model. Instead of single tuples or full columns, the operators ex-
change data in the form of vectors – small (ca. 100-1000 elements) arrays
of input values (see Section 4.2.1.1). These vectors are fully cache-resident,
removing the need of expensive memory accesses. Furthermore, relational
operators are internally implemented using cache-efficient algorithms.

RAM The buffered disk data is stored in a vertical layout, often compressed,
maximizing the amount of useful information that can be kept in memory.
Main-memory bandwidth is minimized by only reading relevant attributes
and by decompressing the buffered compressed data on the boundary be-
tween RAM and cache. Additionally, RAM access is seen in many cases
as an input-output operation, and is carried out through explicit memory-
to-cache and cache-to-memory routines.

Disk The ColumnBM I/O subsystem of X100 is geared towards efficient se-
quential data access. To reduce bandwidth requirements, it uses a ver-
tically fragmented data layout, in some cases enhanced with lightweight

64 Chapter 4: MonetDB/X100 overview

data compression (see Chapter 6). Furthermore, it coordinates the scan
operators of different queries to maximize data sharing and minimize disk
accesses (see Chapter 7). Finally, it minimizes the need for physical data
reorganization on updates by using in-memory delta update structures.

The major components of the system, the query execution and storage layers,
are discussed in the following sections. Other components typically found in
databases, such as the query optimizer or logging and recovery facilities, are not
implemented in the current MonetDB/X100 prototype, due to its clear focus on
the efficient query execution techniques. These components are in many cases
orthogonal to the techniques presented in this thesis, and might become a part
of the system in the future.

4.1.1 Query language

MonetDB/X100 uses a simple relational algebra as the query language. The
algebra is defined on the physical level of operations, so, for example, different
physical types of an aggregation operator are expressed explicitly. A simpli-
fied version of the TPC-H query, used as an example in the right-hand side of
Figure 4.1, is expressed in SQL as:

SELECT returnflag, sum(extprice * 1.19) as sum_vat_price
FROM lineitem
WHERE shipdate <= date ’1998-09-02’
GROUP BY returnflag

This can be translated into the following MonetDB/X100 query:

HashAggr(
Project(
Select(
Scan([’shipdate’, ’returnflag’, ’extprice’]),
<=(shipdate, date(’1998-09-02’))),

[vat_price = *(extprice, flt(’1.19’)])),
[returnflag],
[sum_vat_price = sum(vat_price)])

The MonetDB/X100 version of the full TPC-H Query 1 is presented in Fig-
ure 4.2.
Unlike in MIL (MonetDB query language), MonetDB/X100 operators are

N-ary, i.e. can have an arbitrary number of input attributes, making the plans
highly similar to the ones used by traditional RDBMSs. All the computations,
including simple arithmetic, are expressed as functions using prefix notation.

Section 4.1: MonetDB/X100 architecture 65

Sort(
Project(
HashAggr(
Project(
Select(
Scan(
[’l_shipdate’, // input columns
’l_returnflag’,
’l_linestatus’,
’l_quantity’,
’l_extendedprice’,
’l_discount’,
’l_tax’]),

<=(l_shipdate, date(’1998-09-02’))),
[l_returnflag, // pre-aggregation projections
l_linestatus, // and computations
l_quantity,
l_extendedprice,
l_discount,
discountprice = *(-(flt(’1.0’), l_discount), l_extendedprice),
charge = *(+(flt(’1.0’), l_tax), discountprice)]),

[l_returnflag, // group-by attributes
l_linestatus],
[sum_qty = sum(l_quantity), // aggregate functions
sum_base_price = sum(l_extendedprice),
sum_disc_price = sum(discountprice),
sum_charge = sum(charge),
sum_disc = sum(l_discount),
count_order = count()]),

[l_returnflag, // post-aggregation projections
l_linestatus, // and computations
sum_qty,
sum_base_price,
sum_disc_price,
sum_charge,
avg_qty = /(sum_qty, cnt=dbl(count_order)),
avg_price = /(sum_base_price, cnt),
avg_disc = /(sum_disc, cnt),
count_order]),

[l_returnflag ASC, // final sort parameters
l_linestatus ASC]))

Figure 4.2: TPC-H Query 1 (see Figure 3.2) in MonetDB/X100 algebra

66 Chapter 4: MonetDB/X100 overview

These functions map directly onto primitives described later. The output at-
tributes are implicitly defined for each operator. For example, Select propa-
gates all the attributes from its child, Project explicitly defines which child at-
tributes are propagated and what new attributes are introduced, and HashAggr
returns the input columns used in the group-by list and the results of the ag-
gregate functions.
MonetDB/X100 operators can process two types of input data: dataflows

and tables. A dataflow contains tuples delivered in a pipelined fashion. Tables
are a special version of dataflows, where the entire input is provided in a single
iteration step. This allows operators that e.g. perform random accesses into
the data or need to read the same data multiple times. The list of the major
operators currently available in MonetDB/X100 is presented in Table 4.1.

4.2 Vectorized in-cache execution model

To provide a high-efficiency query execution engine for data-intensive applica-
tions, we propose a new execution model, used in MonetDB/X100, that keeps
the benefits of the existing approaches, while avoiding their problems. To main-
tain scalability, this new model needs to work in a pipelined fashion, avoiding
expensive materialization. On the other hand, to achieve high CPU performance,
it needs to avoid expensive per-tuple interpretation by processing multiple val-
ues at once. This analysis has led to the formulation of an execution model
presented in this chapter, based on the concept of vectorized in-cache execution.

4.2.1 Vectorized iterator model

Like in the traditional pipelined model, MonetDB/X100 query plans consist of
a tree (or a DAG) of operators. However, instead of single tuples stored in the
N-ary format, they operate on vectors of values. Operators provide generic high-
level logic, and use primitives – specialized, type-specific functions – for actual
data processing. These concepts, visualized in the right-hand side of Figure 4.1,
are the basic components of the MonetDB/X100 execution layer.

4.2.1.1 Vectors

Vectors are the basic data manipulation and transfer units in the vectorized
execution model. Each vector contains a simple, one-dimensional array of values,
similar to the [void,type] BATs found in MonetDB. The number of elements
in a vector may vary, and typically ranges from 100 to 1000 tuples.

Section 4.2: Vectorized in-cache execution model 67

Operator Definition
Basic operators

*Scan A family of operators providing a dataflow of tuples coming from different
sources: ColumnBM storage (ColumnScan), MonetDB BATs (BatScan), sim-
ple binary files (RawScan), PAX-formatted [ADHS01] binary files (PaxScan).

*Save A family of operators that save the input, fully symmetric to *Scan. Includes
ColumnSave (with optional compression), BatSave, RawSave and PaxSave.

Print Displays the input values.
Unary (one input relation) operators

Select Returns tuples that match a specified predicate.
Project Performs column projection and introduces new columns with values com-

puted from the input columns. Does not perform duplicate elimination.
HashAggr Performs aggregation on the input. If the aggregate keys are not provided,

global aggregates are computed. If the aggregate functions are not provided,
it performs duplicate elimination.

MergeAggr Similar to HashAggr, but assumes the input to be clustered by the key
values.

FixedAggr Similar to MergeAggr, but assumes the input to be clustered in groups of a
predefined size.

TopN Selects top tuples according to some ordering criteria.
ExternSort Performs a partitioned external radix-sort.

Binary (two input relations) operations
Hash* Hash-based in-memory operations. Provide different variants of joins (N-1,

N-N, inner, outer etc.) and set operations (union, diff etc).
Merge* Similar to Hash*, but assumes both inputs are sorted by the key values.
FetchJoin* Joins based on join-indices. Requires a table as the right input.
CartProd Produces a Cartesian product of two inputs. Requires a table as the right

input.
Other operations

Window Returns tuples from a pre-specified range (counted as the position in the
dataflow).

FlowMat Materializes an arbitrary dataflow into a table.
Reuse Allows multiple consumers to read from the same input data. It adapts to

situations when the consumers are not synchronized, and buffers the tuples
accordingly.

Chunk Creates a dataflow with a new vector size. Additionally condenses the data
if the input has a selection vector.

BEP Performs Best-Effort Partitioning on the input (see Section 5.4).
Array A dataflow generating a sequence of all indices in the N-dimensional space,

similar to grid in [BS92].

Table 4.1: Main operators available in the MonetDB/X100 algebra

68 Chapter 4: MonetDB/X100 overview

Vectors are typically transient – during consecutive iterations of a given
operator they contain different data. Internally, the pointer to the actual data
can be dynamic, allowing e.g. zero-cost access to a large sequential data structure
(e.g. a disk page in the buffer pool). For variable-size data types, a vector can
have an associated heap structure. This allows temporary storage of e.g. string
values.
Vectors are used to pass data between operators, but they are also used heav-

ily inside the operators. For example, the hash-join implementation discussed
in Section 5.3 uses vectors to keep the internally computed hash-values of input
tuples.
In traditional block-oriented processing, tuples are typically stored in the

N-ary form [PMAJ01]. The rationale of using vectors holding vertically decom-
posed data comes from two observations. First, with this solution operations
that add or remove columns are trivial and do not need to copy any data.
Second, as discussed further in Section 5.2.2, dense data packing in vectors re-
moves the need for tuple navigation, provides better sequential memory access
and exposes SIMD opportunities.

4.2.1.2 Operators

Operators are the building blocks of the query plan. They operate in a pipelined,
pull-driven fashion, as in the Volcano model. The difference is that instead of
single tuples, operators exchange data using vectors. A collection of per-attribute
vectors represents a set of tuples with values of a given tuple stored at the same
position in all vectors. To reduce the need for data copying, it is possible to
define that only a subset of the tuples needs to be processed. This is achieved
by using an optional selection vector – an array containing offsets of the relevant
tuples.
Operators provide generic logic, independent of the input data types, prop-

erties etc. To perform the actual work, they use primitive functions, described
below. For example, the pseudo code for the next() method of the Select
operator looks like this:

int Select::next() {
while (true) {
n = child->next(); // see how many tuples are produced by the child
if (n == EndOfStream)
return EndOfStream;

n = condition->evaluate(n);
if (n > 0) // something was selected
return n; // return the number of selected tuples

Section 4.2: Vectorized in-cache execution model 69

}
}

This logic is very similar to the tuple-at-a-time model (see Section 3.3), but
instead of operating on a single tuple, it is vector-based. In this code, condition
may be an arbitrary expression that computes the desired predicate. Expressions
are components that glue the primitives with their associated input and result
vectors. In this case, the result vector of the condition expression is being
used as the selection vector of the parent operator. Expressions can be nested
– for example, evaluation of condition may trigger the evaluation of its sub-
expressions. The leaves in an expression tree can be expressions exported by the
child operators, or intermediate expressions produced by a given operator (e.g.
discountprice in Figure 4.2).
As mentioned, the operators in MonetDB/X100 are N-ary, allowing an ar-

bitrary number of input attributes. However, the primitives used to perform
the operations can only work on a limited combination of input types. As a
result, internally, operators need to introduce per-attribute logic. For example,
the pseudo code for the next() method of the Project operator is:

int Project::next() {
n = child->next();
if (n == EndOfStream)
return EndOfStream;

for (i = 0; i < expressions->size(); i++)
expressions[i]->evaluate(n);

return n; // return the number of selected tuples
}

The operator logic, trivial in case of Project, becomes significantly more com-
plex in operators such as hash-join and merge-join, especially if there are mul-
tiple key columns. The problems with providing vectorized versions of such
operators, as well as implementation techniques and examples for some typical
operations are discussed in Chapter 5.

4.2.1.3 Primitives

While operators provide high-level generic logic, primitives are the components
that perform all the operations on the actual data. Similar to operators in MIL,
primitives are highly specialized for a given task and data type combination.
However, the granularity of operation is much smaller. For example, in MIL
an operator would perform the entire process of hash-aggregation for the entire
column, involving hash number computation, finding a position in a hash table,

70 Chapter 4: MonetDB/X100 overview

updating aggregates etc. In MonetDB/X100, each of these tasks is implemented
by one or more primitives, with operator logic gluing them together. As a result,
the total number of primitives is even higher than in MonetDB, but they are
significantly simpler than the full operators, making the code footprint relatively
small. Like MonetDB, MonetDB/X100 relies on the Mx tool [KSvdBB96] with
heavy macro expansion to implement the primitives. This results in a large
number of short and efficient routines, usually performing a single loop over the
data e.g.:

int map_add_sint_col_sint_val(int n, sint *result, sint *param1, sint *param2) {
for (int i = 0; i < n; i++)
result[i] = param1[i] + *param2;

return n;
}

Each primitive is identified with a signature, defining the function of the
primitive, its input and output types etc. For example, a primitive adding a
signed-integer vector to a constant has a signature map add sint col sint val,
with col representing a column of values (vector), and val representing a single
value (constant). Primitives are organized into groups defining their functional-
ity. For example, “map” primitives produce a single value for each input tuple
(e.g. math operations); “select” primitives generate a selection vector according
to a predicate; “aggr” primitives take care of aggregation-specific operations
etc. This allows determining which primitive needs to be chosen for a specific
operation. For example, different primitives that check if float values are greater
than a constant will be used if it is used to select tuples in the Select opera-
tor (select gt flt col flt val) or if it is used to compute a Boolean value in
the Project operator (map gt flt col flt val). Currently, for every signature
there is exactly one primitive. However, it is possible to extend this scheme to
allow multiple primitive implementations, with one dynamically chosen depend-
ing on e.g. a CPU type, similarly as is done in LibOIL [Lib]. A choice can also
be based on query and data properties, e.g. depending on predicate selectivity,
a different select * implementation can be more efficient [Ros02].
Another possible extension is to allow compound primitives – primitives

that perform complex operations. For example, the computation of the Ma-
hanalobis distance, a performance-critical operation in some multimedia re-
trieval tasks [CvBdV04], can be defined for some cases as follows:

DM (x, y, σ) =

√
(x− y)2
σ

(4.1)

In MonetDB/X100, this can currently be expressed as an explicit computation:

Section 4.2: Vectorized in-cache execution model 71

sqrt(/(sqr(-(x, y))), sigma)

This will construct a tree of expressions, with one primitive for each mathe-
matical operator. In this tree, the intermediate results at all evaluation steps
need to be materialized, which introduces a small, yet visible overhead. Another
approach is to manually implement a map mahanalobis primitive containing
the entire evaluation, and call it explicitly in the query plan. This can be done
either with manual C code or by using a primitive generator based on signature
requests, as discussed in [BZN05]. The final option would be to automatically
detect often used expression patterns and dynamically compile, link and use the
optimized primitives.
MonetDB/X100 primitives, like MonetDB operators, are based on the prin-

ciple of bulk processing. In one function call, a large set of values is processed,
without the need of per-tuple decisions based on data type, input properties
etc. This way all the performance benefits of MonetDB discussed in Section 3.4
can be maintained. Additionally, the next section discusses how MonetDB/X100
manages to avoid the in-memory materialization problem that hinders the per-
formance in the original MonetDB model.
The implementation of primitives is a relatively straightforward task for

simple operations like projection or selection. However, special care needs to be
taken to guarantee their high performance on modern CPUs. The discussion of
how this can be achieved even for complex operations is presented in Chapter 5.

4.2.2 In-cache execution

MonetDB/X100 primitives are similar to MonetDB operators in many ways:
they use highly specialized code, achieve high CPU efficiency, and consume and
produce arrays of values. In MonetDB this last property can lead to the materi-
alization of large intermediate results, which results in a significant performance
degradation, as discussed in Section 3.4 – the main memory bandwidth is often
simply too low to sustain the data hunger of the CPU-efficient primitives. To
avoid this problem, MonetDB/X100 exploits the fact that cache-memory band-
width is significantly higher than that of RAM, and introduces a principle of
in-cache execution. The idea is presented in the left-hand side of Figure 4.1:
vectors are organized in such a way that their entire memory footprint is small
enough to fit in the CPU cache. This allows keeping the materialized results on
the CPU die, without the need of expensive writes into main memory.
To demonstrate the importance of keeping the data in the CPU cache, we

72 Chapter 4: MonetDB/X100 overview

RAM

mul1

mul2

CPU cache

add1

l_tax

l_extendedprice

l_quantity

netto_value

tax_value

total_value

 0.5
 1
 2

 5
 10
 20

 50
 100
 200

1 32 1K 32K 1M

E
xe

cu
tio

n
tim

e
(c

yc
le

s/
op

er
at

io
n)

Vector size (tuples)

mul1
mul2
add

Figure 4.3: Plan of a simple query
in MonetDB/X100, demonstrating
in-RAM or in-cache data place-
ment

Figure 4.4: Impact of data location and
vector size on primitive performance,
using a query from Figure 4.3

analyze the performance of a simple X100 query, equivalent to this SQL state-
ment:

SELECT l_quantity * l_extendedprice AS netto_value,
netto_value * l_tax AS tax_value,
netto_value + tax_value AS total_value

FROM lineitem

The simplified plan for this computation is presented in Figure 4.3. It shows
that the base columns are read from main memory (storage manager buffers),
while the intermediate results stay in the CPU cache. Figure 4.4 demonstrates
the speed of the primitives depending on the used vector size. For small vector
sizes, the execution time is dominated by the per-vector logic. On the other
hand, for large vector sizes, the vectors do not fit in the CPU cache anymore,
causing expensive main-memory traffic.
The performance of the individual primitives depends on the location of their

input data. As Figure 4.4 shows, the mul1() primitive is significantly slower than
add1() – the reason is that it needs to read a large amount of data from main
memory. In this case, with the optimal vector size, it spends 3.5 CPU cycles to
add two 4-byte wide values. On a 2.16GHz machine, this results in a memory
bandwidth of ca. 4.8 GB/sec. On the other hand, add1 only spends 0.9 cycles on
the equivalent computation (on this platform multiplication and addition exe-
cute at the same speed), because it can quickly access all its input data in the
CPU cache. The performance of mul2 lands in between (2.1 cycles), as only one
of its inputs is RAM-resident. This experiment demonstrates that even with se-

Section 4.2: Vectorized in-cache execution model 73

quential access keeping the data in-cache can result in a significant performance
improvement and explains the performance benefit of MonetDB/X100 over the
MonetDB-style processing.

4.2.2.1 Cache interference

Many cache-conscious data processing techniques implicitly assume that dur-
ing the operation of a given algorithm it has an exclusive ownership of the
cache [MBK02]. However, in real-life scenarios, it is often the case that multiple
queries are active at the same time in the system, and the execution context of
the CPU changes quite frequently. As a result, the cache content useful for one
query can be replaced with other data. This problem has been demonstrated e.g.
in [CAGM07, Section 8.2.5] where the performance of the hash-join algorithm
based on cache-partitioning has been shown to deteriorate significantly (up to
78%) when the cache content is periodically flushed.
To analyze the impact of cache interference on the performance of Mon-

etDB/X100 in-cache processing, two parts of the execution layer need to be
considered: the iterator pipeline and the individual operators. The impact on the
operators is algorithm-specific and not directly related to the chosen execution
model. For example, the cache-partitioned hash-join will suffer from the cache
interference problems in all the execution models: tuple-based, column-based,
and vector-based. Therefore, we postpone the discussion of cache-conscious op-
erator implementations to Chapter 5, and for now focus on the execution model
itself.
An execution context change in the CPU can occur when an application

performs a system call, e.g. by requesting an I/O operation. Also, the kernel
can decide to preempt the current process, e.g. when an interrupt happens
or the quantum of time assigned to this process is finished. In the scenarios
MonetDB/X100 is targeted at, the system is typically performing relatively few
and large I/Os, hence the interrupts do not occur often. With the typical kernel
scheduling frequency in the range of 100 times per second (10ms), it is reasonable
to assume that an executing process has an uninterrupted slice of time in the
range of 0.1 to 10 ms.
To evaluate the robustness of the vectorized in-cache execution model pro-

posed in MonetDB/X100, we analyze the performance of the TPC-H Query 1
with enforced cache-flushes happening at different intervals. Query 1 is a good
candidate to demonstrate the impact on the iterator pipeline itself, as all the
operators except for the aggregation are stateless, and the aggregation uses a
very small hash-table, as it only computes 4 output values. As a result, only the

74 Chapter 4: MonetDB/X100 overview

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 300 1000 3000

C
ac

he
-f

lu
sh

 C
P

U
 u

sa
ge

/ q

ue
ry

 s
lo

w
do

w
n

(%
)

Cache-flush sleep time (usec)

Cache-flush CPU usage
X100 query slowdown

Figure 4.5: Impact of the cache-flushing on the TPC-H Query 1 performance in
MonetDB X100 (2.4 GHz Athlon64, 512KB L2 cache)

vectors containing the data passed between the operators use the CPU cache.
In the experiment presented in Figure 4.5, a series of queries is running, and,
for part of the queries, a separate program is forcing the cache-flush by touching
all the cache lines in a separate cache-sized main-memory area.
As the results show, the slowdown of the queries is in line with the CPU time

taken by the flushing program, and not significantly higher. This demonstrates
that the vectorized in-cache model is relatively robust to cache interference.
One of the reasons the impact of the cache flushing is so marginal, compared to
the results from [CAGM07], is that for most operations in this query the data
accesses are fully sequential. As a result, if the cache-misses start to occur at the
beginning of the vector, the hardware-prefetching mechanisms available in most
modern CPUs (see Section 2.2.3) will be triggered and will start loading the
remaining part of the data. Additionally, even with a 0.1ms time slice, tens or
hundreds of primitives can execute, exploiting the exclusive access to the cache
during this period.

4.2.2.2 Vector size and allocation

For high execution efficiency, it is important that the vector sizes in the vector-
ized execution model are on the one hand as large as possible, to minimize the
interpretation overhead, and on the other hand not too large, to fit in the CPU
cache. Two aspects of this issue need to be analyzed: how many vectors need to
be allocated, and the size of each vector.

Section 4.2: Vectorized in-cache execution model 75

In the existing MonetDB/X100 implementation, every primitive uses its in-
put vectors and introduces a new result vector, with vector sizes fixed in the
entire query plan. The only optimization currently applied is that if one of the
primitive input vectors has only one parent, and shares the same datatype with
the result vector, it can be reused. This is similar to the register allocation prob-
lem, found in compiler optimization (see e.g. [HKMW66, AC76]). It is possible
to see physical vectors as vector registers and then map logical vectors used by
the primitives to them. Such an optimization can reduce the number of vectors
within a given query.
An interesting point in vector allocation optimization is that different vectors

can have different datatype widths. As such, for optimal results, the classical
register allocation scheme needs to be extended to be able to e.g. reuse a 64-bit
wide vector space as two 32-bit vectors. Another possible optimization exploits
the fact that query graphs can often be decomposed into a collection of pipelin-
able sub-graphs (separated by e.g. blocking operators). Then, vector allocation
for each sub-graph can be performed separately.
Once the number of vectors for a given query sub-graph is known, we can

find the vector size by dividing the available D-cache size by the number of
vectors. Typically, not the entire cache can be used, as there is space overhead
related to operator state, especially for blocking operators with a potentially
large state (e.g. hash aggregation). Another problem is related to the trade-
offs between targeting different CPU cache levels. While, as presented earlier,
L1 can provide much better performance than L2, it can require significantly
smaller vectors. The choice should be based on the complexity of the query: for
very simple queries L1 should be targeted, and for queries with more vectors, it
should be L2.

4.2.3 Execution layer performance

To evaluate the performance of the proposed execution model, this section
demonstrates the performance of TPC-H Query 1 on a 1GB database running
on top of MonetDB/X100 with a varying vector size. The results, presented
in Figure 4.6, follow the trend already observed in Figure 4.4: the speed im-
proves very quickly with an increasing vector size, until it reaches the optimum
where the vectors still fit in the CPU cache and the interpretation overhead is
maximally amortized. Then, once the vectors exceed the cache size, the speed
deteriorates again. For comparison, the same figure presents the results for two
“traditional” tuple-at-a-time systems (MySQL and a commercial one), Mon-
etDB column-at-a-time processing, and hand-written optimized code. Interest-

76 Chapter 4: MonetDB/X100 overview

low interpretation overhead

 1 4 16 64 256 1K 4K 16K 64K 256K 1M
 0.1

 1

 10

26.6

 100

DBMS "X"
MySQL 4.1

28.1

"tuple at a time"

interpretation
dominates
execution

6M4M

MonetDB/X100

in−cache materialization

query without selection

materialization overhead
main−memory

MonetDB/MIL
"column at a time"

T
im

e
(s

ec
on

ds
)

0.60

0.22
Hand−Coded
C Program

"vector at a time"

3.7

2.4

vectors start to exceed
CPU cache, causing
extra memory traffic

interpretation
overhead
decreases

Figure 4.6: TPC-H Query 1 performance in X100 with varying vector size (in
tuples, horizontal axis, 2005 results from [BZN05])

ingly, MonetDB/X100 results with vector size of 1 match almost exactly the
performance of the tuple-at-a-time systems. Similarly, with very large vector
sizes, MonetDB/X100 execution boils down to the column-at-a-time model, but
achieves performance almost two times better than MonetDB. That difference
is caused by the cost of after-selection projection of tuple attributes in Query
1 on MonetDB, visible in a series of join operations in Figure 3.6. In Mon-
etDB/X100 this projection is avoided thanks to the selection vector. For a fair
comparison, Figure 4.6 additionally includes the MonetDB results without the
selection statement – the computation cost for the extra tuples is negligible,
as the predicate selects almost all tuples. MonetDB/X100 performance almost
exactly coincides with the performance of this approach.

Table 4.2 presents a detailed analysis of Query 1 performance with Mon-
etDB/X100, showing per-primitive and per-operator properties. Since in Query
1 the aggregation produces only 4 tuples, post-aggregation processing time is
negligible and is ignored. The results show that the primitives achieve very good
per-tuple performance, spending only a few CPU cycles on each operation, and
deliver extremely high data throughput (for primitive bandwidth, we count both

Section 4.3: Bandwidth-optimized storage 77

input total time BW avg. X100 primitive
count MB (us) MB/s cycles
6.0M 68.7 7294 9418 3.1 select < date col date val
5.9M 135.4 11349 11930 4.9 map - slng val slng col
5.9M 135.4 12112 11178 5.3 map * slng col slng col
5.9M 135.4 11537 11736 5.0 map + slng val slng col
5.9M 135.4 9219 14687 4.0 map * slng col slng col
5.9M 95.9 6138 15623 2.7 map uidx uchr col
5.9M 141.1 8508 16584 3.7 map directgrp uidx col uchr col uint val
5.9M 135.4 12025 11259 5.2 aggr count uidx col
5.9M 158.0 15741 10037 6.9 aggr sum sint col uidx col
5.9M 180.6 16588 10887 7.2 aggr sum slng col uidx col
5.9M 180.6 16513 10936 7.2 aggr sum slng col uidx col
5.9M 180.6 16462 10970 7.2 aggr sum slng col uidx col
5.9M 180.6 16575 10875 7.2 aggr sum slng col uidx col

X100 operator
0 2363 ColumnScan

6.0M 8244 Select
5.9M 46709 Project
5.9M 112699 Aggr(DIRECT)

Table 4.2: TPC-H Query 1 performance trace with MonetDB/X100 (Core2
2.4GHz, SF=1, vector size 1024 tuples, post-aggregation processing ignored)

input and output data volume). This is possible thanks to performing the exe-
cution on cache-resident data.

4.3 Bandwidth-optimized storage

Performance improvements achieved with the vectorized query execution model
result in a demand for very high data delivery rates from persistent storage.
In memory, MonetDB/X100 can process hundreds of megabytes, or even over a
gigabyte, of columnar data on a single CPU core per second, leading to data con-
sumption of 0.1 to 1 bytes per CPU cycle. Providing such data bandwidths, even
for a single core system, requires relatively expensive solutions, and scaling for
multi-core systems is even more challenging. Additionally, Figures 2.1 and 2.8
demonstrate that CPU performance improves significantly more rapidly than
disk bandwidth and latency, suggesting that efficient data delivery will continue

78 Chapter 4: MonetDB/X100 overview

processing disks throughput

CPU RAM # totsize cost single 5-way

4 Xeon 3.0GHz dual-core 64GB 124 4.4TB 47% 19497 10404
2 Opteron 2GHz 48GB 336 6.0TB 80% 12941 11531
4 Xeon 3.0GHz dual-core 32GB 92 3.2TB 67% 11423 6768
2 Power5 1.65GHz dual-core 32GB 45 1.6TB 65% 8415 4802

Table 4.3: Official 2006 TPC-H 100GB results

to be a problem in the future. As a result, software approaches attempting to
reduce the data demand from the physical storage become increasingly impor-
tant.
We address the problem of providing high data bandwidth to the execution

layer by introducing a new storage layer, called ColumnBM. It is optimized to
fully exploit the available disk bandwidth, and proposes a number of techniques
for reducing data volumes that need to be shipped from disk. This section
presents the main design choices of this layer, while Chapters 6 and 7 discuss in
more details two major optimization techniques ColumnBM introduces: light-
weight compression and cooperative scans.

4.3.1 Scan-based processing

Database systems are addicted to random disk I/O, caused by non-clustered
index lookups, and hardware trends are pushing this model to the limit of sus-
tainability. Foreign-key joins, as well as selection predicates executed using un-
clustered indices, both may yield large streams of row-IDs for looking up records
in a target table. If this target table is large and the accesses are scattered, the
needed disk pages will have to be fetched using random disk I/O. To optimize
performance, industry-strength RDBMSs make good use of asynchronous I/O
to farm out batches of requests over multiple disk drives, both to achieve I/O
parallelism between the drives, and to let each disk handle multiple I/Os in a
single arm movement (amortizing some access latency).
Massive numbers of unclustered disk accesses occur frequently in benchmarks

like TPC-H, and it is not uncommon now to see benchmark configurations that
use hundreds or thousands of disks. For example, Table 4.3 shows that four
representative TPC-H submissions of even the smallest 100GB data size used
an average of 150 disks with total storage capacity of 3.8 terabyte. All these
disks are less than 10% full, and the main reason for their high number is to
get more disk-arms, allowing for a higher throughput of random I/O requests.

Section 4.3: Bandwidth-optimized storage 79

Note from Table 4.3 that a high number of disks seems especially crucial in the
concurrent (5 stream) query scenario. The underlying hardware trends of the
past decades, namely sustained exponential growth of CPU power as well as a
much faster improvement of disk-bandwidth than of I/O latency, are expected
to continue. Thus, to keep each next CPU generation with more cores busy, the
number of disks will need to be doubled to achieve system balance.
This exponential trend is clearly unsustainable, and one can argue that in

the real world (i.e. outside manufacturer benchmarking projects) it is already
no longer being sustained, and database servers are often configured with fewer
disks than optimal. The main reason for this is cost, both in terms of absolute
value of large I/O subsystems (nowadays taking more than two thirds of TPC-
H benchmark systems cost, see Table 4.3), but also maintenance costs. In a
multi-thousand disk configuration, multiple disks are expected to break each
day [SG07], which implies the need for full-time attendance by a human system
administrator.
We argue that the only way to avoid efficiency problems caused by random

I/O is to rely more on sequential scans of tables or clustered indices, which
depend on disk bandwidth rather than latency. Achieving scan-mostly data
plans is possible thanks to a number of techniques:

1. storing relations redundantly in multiple orders [AMDM07], such that more
query patterns can use a clustered access path. To avoid the cost of up-
dating multiple such tables, updates in such systems are buffered in RAM
in differential lists and are dynamically merged with persistent data.

2. exploiting correlated orderings. In MonetDB/X100, a min- and max-value
is kept for each column per large disk block (see Section 4.3.3). Such
meta-data, similar to “small materialized aggregates” [Moe98] and also
found e.g. in the Netezza system as “zonemaps” [Net], allows avoiding
reading unneeded blocks during an (index) scan, even if the data is not
ordered on that column, but on a correlated column. For example, in the
lineitem table in the TPC-H schema it allows avoiding I/O for almost all
non-relevant tuples in range selections on any date column in the TPC-
H schema, as dates in the fact tables of a data warehouse tend to be
highly correlated. This technique can sometimes result in a scan-plan that
requires a set of non-contiguous table ranges.

3. using multi-table clustering or materialized views, to exploit index range-
scans even over foreign-key joins.

80 Chapter 4: MonetDB/X100 overview

4. exploiting large RAMs to fully buffer small (compressed) relations, e.g. the
dimensions of a star schema.

5. reducing scan I/O volume by offering column storage (DSM) as an op-
tion [ZHNB06, SAB+05] to avoid reading unused columns. The same re-
mark as made in (1) on handling updates applies here.

6. using data compression, where the reduced I/O cost due to size reduction
outweighs the CPU cost of decompression. It has been shown that with col-
umn storage, (de-)compression becomes less CPU intensive and achieves
better compression ratios (Chapter 6, [AMF06]).

After applying (1-2), data warehousing queries use (clustered index) scans
for their I/O, typically selecting ranges from the fact tables. Other table I/O
can be reduced using (3-4) and I/O bandwidth can be optimized to its minimum
cost by (5-6).

4.3.2 ColumnBM storage format

ColumnBM stores data in fixed-size blocks. To reduce the cost of moving the
disk head when performing multiple scan operations at the same time (which
happens in DSM even with a single active scan operator), the blocks from the
same column are grouped into large chunks. The size of a chunk is large enough
to amortize the disk latency, as presented in Figure 2.9. When performing a
scan, if the system detects multiple blocks from a single chunk are useful for a
given query, they are all read in one operation. Similarly, when saving the data,
the writing process for a block can be delayed to possibly save multiple blocks
in one go.
In the storage layer, most database systems follow either NSM or DSM as

their data organization format, as discussed in Section 3.1.1. A choice of the
storage model has an impact not only on the I/O performance, but also on the
query processing efficiency. If the storage format does not match the internal
execution layer format, an extra translation phase is necessary. This reduces the
performance, as discussed in Section 3.5.7 for the [HLAM06] results.
The PAX storage format [ADHS01], where data is organized in columns,

like in DSM, but all attributes are grouped in a single I/O block, like in NSM,
has demonstrated that using different data representations on disk and in mem-
ory can be beneficial. ColumnBM applies this idea by keeping in-block data in
the columnar format, matching the MonetDB/X100 execution layer. However,

Section 4.3: Bandwidth-optimized storage 81

it follows and extends the PAX approach by allowing arbitrary vertical frag-
mentation of a table on disk, similar to the data-morphing technique [HP03] for
in-memory data. In this approach, a table is decomposed into non-overlapping
groups of attributes, with each group stored as PAX disk blocks. As Figure 4.7
demonstrates, both DSM and NSM can be expressed as special cases, allowing
having a uniform infrastructure for different storage layouts.
The flexible partitioning in ColumnBM allows application-specific data or-

ganization. For large scans involving a subset of columns, DSM can be applied.
For tasks that read relatively small numbers of tuples and use most of the
columns, NSM is a better choice. An example of such an application is inverted-
list processing in information retrieval [HZdVB06], where in each query a subset
of a three-column table (term-doc-score) is scanned for each term. Since many
terms have a relatively small number of occurrences, the scan times for these are
dominated by the random-access cost. Arbitrary partitioning is applicable if the
access pattern of an application is well known – then attributes often accessed
together can be grouped on disk.
Having both PAX and DSM facilities also allows applying the fractured mir-

rors [RDS02] storage strategy. In this approach, the data is stored in two copies:
one NSM (PAX in MonetDB/X100) and one in DSM, distributed among multi-
ple disks. This allows both efficient scan-based processing, using the DSM copy,
and fast random-access lookups, using the NSM/PAX copy. This functional-
ity, useful for query execution, is also very important for the update strategies
currently being developed for ColumnBM, as discussed in Section 4.3.4.

4.3.3 Index structures

To allow efficient range lookups on various attributes, databases typically apply
non-clustered B-tree indices. However, if a given index does not cover all the
query attributes, extra random accesses to the base table are necessary. This
makes this approach useful only if a very small percentage of tuples is selected.
To increase the applicability of scan-based approaches, we allow extra indices
to carry an arbitrary collection of base table columns, allowing satisfying more
queries. This is similar to the projections proposed in [SAB+05], but ColumnBM
always keeps one full copy of a table with all the columns sorted in the same
order.
To reduce the volume of scanned data even in the absence of ordering on

a range-predicate attribute, ColumnBM provides per-block value-range infor-
mation, which is a simple case of small materialized aggregates [Moe98]. This
information is especially useful with correlated columns, as is the case e.g. in

82 Chapter 4: MonetDB/X100 overview

c
c

c
c

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

disk
blocka

a
a

a

a
a

a
a

a
a

a
a

b
b

b
b

b
b

b
b

b
b

b
b

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

a
a

a
a

a
a

a
a

a
a

a
a

b
b

b
b

b
b

b
b

b
b

b
b

data

columnar

c
c

c
c

a
a

a
a

b
b

b
b

a
a

a
a

b
b

b
b

b
b

b
b

b
b

b
b

c
c

c
c

c
c

c
c

a
a

a
a

a
a

a
a

b
b

b
b

b
b

b
b

c
c

c
c

c
c

c
c

a
a

a
a

a
a

a
a

{a}, {b}, {c}{a, b, c}
(NSM/PAX)

{a, b}, {c}
(DSM)

Immutable disk blocks

Write−delta

Disk

RAM

Cache uncommitted
updates

Read−delta

Figure 4.7: ColumnBM data organization, with NSM,
DSM and arbitrary vertical fragmentation strategies for
a 3-column table

Figure 4.8: Multi-
level delta structures
for handling updates
in ColumnBM

different date attributes in the “lineitem” table of the TPC-H benchmark. Then,
if a table is sorted on one date attribute, and a query has a range predicate on
a different date column, per-block statistics can be used to filter-out many disk
blocks.
Another index structure used in ColumnBM are join-indices [Val87], which

provide direct access to the matching tuple in the parent relation for each tuple
in the child table in a foreign-key relationship. This can significantly reduce the
join cost when the inner relation is a rarely-updated, memory-resident table,
as is often the case with the dimension tables in typical star or snowflake data
warehousing schemas.

4.3.4 Updates

ColumnBM provides a novel approach to handling updates which allows com-
bining high performance of scan-based queries with high update throughput.
This functionality is the topic of ongoing research [HNZB08], and this section
provides only an overview of the design goals and features.

4.3.4.1 Delta-based updates

Most database systems perform updates by directly modifying related disk
pages. A stream of such updates results in a high load of random disk ac-
cesses in NSM storage, which is even higher in DSM, where multiple columns

Section 4.3: Bandwidth-optimized storage 83

need to be accessed. Large disk blocks and in-block compression, often used
in analytics-oriented systems, make in-place updates even more expensive. To
overcome this problem, MonetDB/X100 uses in-memory deltas, similar to dif-
ferential files [SL76]. In this approach, updates are buffered in a delta structure,
which is transparently merged during query processing. These structures are
periodically merged into persistent storage, but the updates are visible even
before this process occurs.
Multiple delta structures can be stacked to allow transaction isolation. For

example, Figure 4.8 shows a simple two-level approach to implement the read-
committed isolation level. Here, the active transaction reads previous updates
from a global read-delta, but writes all changes to its private write-delta, keep-
ing them invisible to other users. Finally, when the transaction commits, the
write-delta is merged into the read-delta, making the changes visible to other
transactions.

4.3.4.2 Positional delta trees

In the previous delta-based approaches [SL76, RDS02], updates in the delta
structures are stored in the same order as the underlying table, and the update
merging is performed by looking at the values of the key attributes. This process
requires all the key attributes of a table to be scanned, even if a query does not
need to process all of them, potentially reducing the performance advantage
provided by DSM. Additionally, finding a position where the deltas need to be
applied in the persistent data stream requires a relatively expensive value-based
search, similar to a single phase in merge-sort.
An alternative to this value-based approach is a newly introduced Positional

Delta Tree (PDT) structure [HNZB08, Section II-C]. PDTs store updates or-
dered by their position in the table, dynamically adjusting these positions with
incoming updates. Having positional access allows the merging process to be
performed even if not all key attributes are fetched from the disk, allowing bet-
ter performance in column stores. Additionally, merging becomes faster since
PDTs provide the direct location in the data stream where the updates need to
be applied.
PDTs introduce one challenge not present in the value-based approaches.

When a tuple is inserted, its exact position needs to be found in the current
image of the data, which might consist of both persistent storage and previ-
ous updates stored in a PDT. With DSM, if the table key consists of multiple
columns, this may require multiple disk accesses for each tuple. To avoid this
extra cost, ColumnBM update facilities exploit an optional fractured mirrors

84 Chapter 4: MonetDB/X100 overview

layout discussed in Section 4.3.2. In this approach, an extra NSM/PAX copy of
the table is stored, allowing finding the tuple position with just one I/O access.
This optimization is especially important when multiple indices or table replicas
are present. In such scenarios, any update to the base table needs to be propa-
gated to all the auxiliary structures. This requires getting all the key attributes
of these structures from the base table, which, again, may cause multiple I/Os in
the plain DSM storage scheme, and can be avoided using the NSM/PAX copy.

4.4 Conclusions

This chapter presented the overview of the MonetDB/X100 system architec-
ture, focusing on the execution and storage layers. In the execution layer a new
vectorized in-cache execution model was proposed. By minimizing the interpre-
tation overhead found in most database systems and efficiently exploiting mod-
ern CPU features, it provides execution performance often orders of magnitude
higher than existing solutions. This model is further investigated in Chapter 5.
The high performance of the execution layer requires new approaches in

the storage layer that would scale this performance to disk-resident datasets.
The proposed ColumnBM system achieves this by introducing a number of
strategies for analytical queries: vertical partitioning, scan-optimized storage
and index structures, as well as efficient updates. Two major optimizations in
this component, lightweight compression and cooperative scans are discussed in
more detail in Chapters 6 and 7.

Chapter 5

Vectorized execution model

This chapter discusses in detail the vectorized execution model introduced in
Chapter 4. First, Section 5.1 analyzes the properties of this model, compar-
ing it to the previously proposed tuple-at-a-time and column-at-a-time models.
Later, Section 5.2 discusses the implementation of data processing operations in
this model, first identifying the requirements of efficient implementations, and
then providing a set of implementation techniques. Additionally, Section 5.2.2
discusses different possible choices of data organization during processing. All
these techniques are synthesized in the description of an example implementa-
tion of one of the crucial database operators: a hash join. A simple vectorized
implementation is initially presented in Section 5.3, and Section 5.4 discusses a
set of techniques improving its performance. Finally, to complete the chapter,
Section 5.5 provides a set of vectorized implementations of other interesting
processing tasks.

5.1 Properties of the vectorized execution model

The goal of researching a new execution model was to overcome the problems
found in the previously proposed tuple-at-a-time and column-at-a-time models.
This section analyzes the properties of the new model and compares them with
the existing solutions.

85

86 Chapter 5: Vectorized execution model

 0.1
 0.2

 0.5
 1
 2

 5
 10
 20

 50

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Vector size (tuples)

gcc
icc

gcc opt.
icc opt.

Figure 5.1: TPC-H Query 1 benchmark on MonetDB/X100 using different com-
pilers, optimization options and vector sizes (Athlon64)

5.1.1 Interpretation overhead

In the traditional Volcano model, the data is processed in a ’pull’ fashion, where
the consuming operators ask their children for the next tuple. As a result, at
least one next() call is performed for every tuple in every operator. Also within
a single relational operator, multiple functions are called. For example, a Project
operator that computes a sum of two columns needs to call an addition primitive
for each tuple it processes. Note that these calls cannot be inlined by the com-
piler, as they are query-specific, hence the cost of passing the parameters and
modifying the program counter is always present. Also, the actual addresses of
the functions to call need to be read from memory, making it hard for a CPU to
speculate ahead of the call. Finally, complex operator logic is performed for ev-
ery tuple, causing the interpretation overhead to dominate the overall execution
time.
With vectorized processing, in both scenarios the function call can be amor-

tized over a large set of tuples. Figure 5.1 presents the results for TPC-H query 1
(scale factor 1) executed on MonetDB/X100 running on a 2-GHz Athlon64. The
first observation is that using the optimal vector size can give a performance im-
provement of as much as 30 times. The second observation is on the influence of
optimization settings in the compiler: with optimization, both using the gcc and
icc compilers, performance gains are much bigger for larger vector sizes. This
is because the actual data processing code can be efficiently optimized by the

Section 5.1: Properties of the vectorized execution model 87

compiler, unlike the branch-heavy control logic found in operators. This aspect
is further analyzed in Section 5.2.1.3.
Comparing to the column-at-a-time model used in MonetDB, the vectorized

model can result in a slightly higher overhead, as the interpretation occurs for
every vector. Still, with vector size in range of hundreds of tuples, this overhead
is so small that its impact on the overall performance is negligible, as seen with
an almost flat line in Figure 5.1. This is confirmed by the left-most side of
the Figure 5.2, which shows that for large vector sizes the number of the CPU
instructions stays virtually constant. Note that MonetDB suffers from main-
memory materialization overhead, which degrades its performance, as discussed
in section 3.4.

5.1.2 Instruction cache

The impact of instruction-cache misses on the performance of the tuple-at-a-
time model has been identified for both OLTP query loads [ADHW99, HA04,
HSA05], as well for OLAP-like queries [ADHW99, ZR04]. They can constitute
even 40% of the entire query execution time [HA04]. Techniques to reduce
this overhead include grouping different queries performing the same opera-
tion [HA04, HSA05] and buffering tuples within a single query [ZR04]. The
latter technique is slightly similar to vectorized processing, since it passes mul-
tiple tuples between the operators. However, it causes an additional data copying
cost, and the data processing is still performed in a tuple-at-a-time fashion.
To demonstrate the impact of the instruction cache on vectorized processing,

we analyze the performance of three queries: TPC-H Q1, and two variants of
it, Q1′ and Q1′′ that use roughly 2- and 3- times more different primitives,
increasing the amount of used instruction memory. In Figure 5.2, for all three
queries we provide both the total number of executed instructions, as well as the
number of L1 instruction cache misses. As the results show, for Q1 instruction
misses are negligible. For Q1′, the number grows somewhat, but still is relatively
low. With Q1′′, the size of separate code paths finally exceeds the size of the
instruction cache, and we see that although the code size increased over 3 times
over Q1, the number of misses can be as much as 1000 times higher, even
though the total number of instructions grew only two-fold. Luckily, even for
this complex query, the number of instruction-misses decreases linearly with a
growing vector size, and the instruction-cache-miss overhead can be alleviated.
Similarly to the interpretation overhead, the overhead of the instruction

misses in the vectorized model can be slightly higher than in MonetDB. Still,
since it is amortized among multiple tuples in a vector, it is typically negligible.

88 Chapter 5: Vectorized execution model

100M
200M

500M
1G
2G

5G
10G
20G

50G

 1 8 64 1K 8K 64K 1M

In
st

ru
ct

io
ns

 e
xe

cu
te

d

Vector size (tuples)

Q1’’
Q1’
Q1

1K

10K

100K

1M

10M

100M

 1 8 64 1K 8K 64K 1M

In
st

ru
ct

io
n-

ca
ch

e
m

is
se

s

Vector size (tuples)

Q1’’
Q1’
Q1

Figure 5.2: Impact of the vector size on the number of instructions and L1
instruction-cache misses (Athlon64)

5.1.3 Processing unit size

Comparing to the tuple-at-a-time and column-at-a-time models, the vectorized
model provides a granularity of operation that falls between these two extremes.
As a result, there are situation in which some logic that is usually executed for
every tuple, can be executed on a per-vector base. A simple example is data
partitioning, when the result partition sizes are not known in advance. The
code for dividing a vector of N tuples into P partitions using the hash values
could be as follows:

for (i = 0; i < N; i++) {
group = hash_values[i] % P;
*(part[group]++) = values[i];
if (part[group] == part_end[group])
overflow(group);

}

Note that the overflow check is necessary for each tuple if we do not know the
partition sizes in advance. While this check is usually false, we can still remove
it from the loop, by exploiting the fact that in most cases the buffers for the
destination groups are much larger than the size of the vector. As a result, we
can check if every group buffer still contains enough tuples before processing
each vector.

for (i = 0; i < P; i++)
if (part[i] >= part_sentinel[i])

Section 5.1: Properties of the vectorized execution model 89

overflow(i);
for (i = 0; i < n; i++) {
group = hash_values[i] % P;
*(part[group]++) = values[i];

}

In this situation, we check for a buffer overflow not N times, but P times. It
is also possible to perform such check every few vectors, to further reduce its
cost. This solution requires some extra ’sentinel’ space left in the buffer, but
this waste should be marginal (e.g. 1024 elements out of 128 thousands). We
compared both solutions implemented using optimization techniques described
in Section 5.2.4, and the second version gave a ca.15% improvement of the
partitioning step (using 64 partitions and 1024-tuple vectors). Note that this
optimization cannot be applied by the compiler automatically, since it requires
modifications to the underlying data organization.
Another case where vectors can be a useful extra computational unit are ex-

ception situations. An example is handling of an arithmetic overflow. Typically,
an overflow is checked for each performed operation. However, on some archi-
tectures, it is possible to check if an overflow occurred over a large set of com-
putations (e.g. by using summary overflow bit in PowerPC CPUs [PMAJ01]).
A different vectorized solution to overflow checking is proposed in Section 5.5.1.
A natural intermediate processing unit can also be helpful for data routing in

a query plan. For example, the exchange operator [Gra90] can distribute tuples
for parallel processing using vectors. Also, in dynamic query optimization, for
example in Eddies [AH00], adapting the plan every vector, and not every tuple,
is beneficial.
Removing logic from the per-tuple loop has an additional benefit – the re-

sulting code is typically simpler, allowing better optimizations by a compiler
and more efficient execution on a CPU.

5.1.4 Code efficiency

In the vectorized model, operator functionality is decomposed into small pro-
cessing units that we call primitives. As hinted before, thanks to their high
specialization they provide code that is easy to optimize for the compiler and
efficiently executed on modern CPUs. As an example, let us analyze the follow-
ing simple routine that adds two vectors of integers:

void map_add_int_vec_int_vec(int *result, int *input1, int *input2, int n) {
for (int i = 0; i < n; i++)

90 Chapter 5: Vectorized execution model

result[i] = input1[i] + input2[i];
}

We can identify the following properties of this routine: it does not contain any
control dependencies, hence does not suffer from branch prediction misses; it
does not contain any data dependencies, hence there are no stalls in the pro-
cessing pipeline; a simple loop allows easy unrolling, reducing the loop overhead;
data access is direct, there is no overhead in attribute extraction; data access
is fully sequential, hence does not suffer from random cache misses and hard-
ware prefetching can be applied; performed operations are simple and allow easy
SIMDization. The last property already provides a 2x-8x speedup for various
operations on many common data types, and with growing widths of SIMD units
(e.g. 256-bits in Intel AVX [Int08]) this performance benefit of this technique
will increase.
The described routine is a perfect example of how efficient vectorization can

be – on a Core2Duo machine it spends only 0.92 cycles per single iteration.
Comparing to an interpreted tuple-at-a-time approach, the performance benefit
can be even two orders of magnitude.
While providing primitives having all described properties for all types of

operations found in databases is probably impossible, efficient solutions can be
developed even for complex problems. In Section 5.2.4 we will discuss a set of
techniques helpful in the implementation of such routines.

5.1.5 Block algorithms

Processing multiple tuples does not only allow efficiently compiled and executed
code. It also enables applying algorithms that require a set of tuples to work. For
example, in software data prefetching, two major approaches are used: pipelined
prefetching and group prefetching [CAGM04]. In the tuple-at-a-time model, they
both require tuple buffering, while being directly applicable in the vectorized
model. On the other hand, in the column-at-a-time model, the effective block
size (full column) is typically too large to exploit the benefit of the prefetching
– the data prefetched at the beginning of the column will be most likely evicted
at the end.
Another technique that requires multiple tuples is efficient computation of

selection predicates [Ros02]. With a block of tuples for which the same predicate
needs to be evaluated, different approaches (binary AND, logical AND or no-
branch) are optimal. The choice of the used method can be performed using
a cost model [Ros02] at query compilation time, but also dynamically during

Section 5.1: Properties of the vectorized execution model 91

the query execution – information about selectivity in the previous vector is
typically a good indicator for the current one.
Finally, having an opportunity to work with multiple tuples allows various

programming tricks. For example, during processing data after selection, where
selection result is a Boolean bitmap, we can exploit the knowledge of high predi-
cate selectivity, similarly as in [ZR02]. Then the bitmap consists mostly of zeros,
and we can check multiple bits in one go, speculating that they are not set, and
handle the non-zero cases in an extra step. Similar tricks can be used to detect
a zero in the vector that is a parameter for the division operation, handle NULL
values in mostly non-NULL data, and more.

5.1.6 Scalability

In the column-at-a-time model, every operator fully materializes its result, mak-
ing it ineffective for queries requiring disk-based intermediate results. The Vol-
cano model, thanks to its pipelined nature, can process datasets larger than
available memory, using on-disk materialization only for blocking operators
(sort, hash-join). This property is directly inherited by the vectorized model.
A newly introduced aspect of the vectorized model is its scalability with

respect to the complexity of the query and the cache size. With complex query
plans that internally keep a large number of vectors, the vector size needs to be
reduced to fit the data in the CPU cache, diminishing the benefits of the reduced
interpretation overhead. As discussed in Section 4.2.2.2, depending on the query
complexity, the vector size should be chosen such that all data fits in either L1
or L2 cache. Since the L2 caches of modern CPUs are in order of megabytes,
vectors can be sufficiently large to remove the interpretation overhead (hundreds
of tuples) and still fit in the cache even for queries with hundreds of vectors.

5.1.7 Query plan complexity and optimization

The query plans for the vectorized model usually match the plans of the tuple-at-
a-time model: they are trees of N-ary operators working in a pipelined fashion.
As a result, the vectorized model can benefit from decades of research on the
traditional query plans optimization.
In the column-at-a-time model, query plans are significantly more complex,

mostly due to the used binary algebra – for the same task, multiple per-column
operations need to be performed. However, due to the materializing nature of
this model, the query plans are closer to an imperative programming language,

92 Chapter 5: Vectorized execution model

and many optimizations from that area are additionally applicable. For ex-
ample, common subexpression elimination is straightforward here, while being
potentially non-trivial in the pipelined model [DSRS01].

5.1.8 Implementation complexity

Implementation of relational operators in the tuple-at-a-time model has been
studied over the last 3 decades and is well understood. Still, typical solutions
provide code that needs to be very generic, making the implementation often
highly complex. In the column-at-a-time model, every operator both consumes
and produces simple data arrays of known data types. This makes the imple-
mentation of most operators relatively straightforward.
The vector-at-a-time model brings a new challenge of decomposing the pro-

cessing into independent vectorized primitives. While for some operators (e.g.
projections) it is easy, for some it is significantly more challenging, as discussed
later in this chapter. An interesting option in this model is that it is possible to
emulate both tuple- and column-at-a-time models internally in the operators,
allowing easy system prototyping.

5.1.9 Profiling and performance optimization

In the tuple-at-a-time model, the processing thread continuously switches be-
tween all operators inside the active plan segment, performing both control logic
and the actual data processing. As a result, profiling the execution of individual
processing steps is relatively complex: putting a time (or e.g. hardware event)
counter for every step inside the operator is often too expensive, and sampling
process activity or simulations can be imprecise. Even when the performance
bottleneck is localized, improving the performance of that part is often hard, as
the involved code is typically large and complex.
In the column-at-a-time model, profiling is straightforward – each operator

is fully independent and hence it is trivial to measure its cost. This allows easy
detection of bottleneck operators. Still, within the operator it is unclear how
much time different operations take. For example, in a hash-join operator, the
operator-level profiling does not provide information on the cost of the build-
and probe-phase separately.
The vectorized model lands, again, in between. Since the profiling overhead

is amortized among multiple tuples, it is possible to precisely measure the per-
formance of every operator and every primitive. As a result, it is easy to spot
fine-grain performance bottlenecks. Additionally, once a bottleneck is located,

Section 5.1: Properties of the vectorized execution model 93

Tuple Column Vector
query plans simple complex simple
instruction cache utilization poor extremely good very good
plan-data cache utilization poor extremely good very good
function calls many extremely few very few
attribute access complex direct direct
time mostly spent on ... interpretation processing processing
CPU utilization poor good very good
compiler optimizations limited applicable applicable
implementation medium easy medium
profiling and optimization hard medium simple
materialization overhead very cheap expensive cheap
scalability good limited good
volume of accessed data large small small

Table 5.1: Comparison of the N-ary tuple-at-a-time (Tuple), MonetDB column-
at-a-time (Column) and vectorized in-cache (Vector) execution models

the code involved is small (typically a single primitive, often only a few lines),
making it relatively easy to optimize. Finally, some dynamic optimizations, like
choosing one of the possible implementations of the same primitive, are easy in
this model.

5.1.10 Comparison summary

To sum up the comparison of the execution models, Table 5.1 shows their prop-
erties in all discussed areas1. Clearly, the vectorized model combines the best
properties of the previous approaches. Still, the question remains, how to actu-
ally implement a full system based on the principles of this model. The following
sections try to address this issue.

1Note that for very complex query plans, in the vectorized model either the vector size
shrinks and the model starts to suffer from some of the “Tuple” problems, or the vector size
exceeds the cache capacity, causing some of the “Column” inefficiencies

94 Chapter 5: Vectorized execution model

5.2 Implementing the vectorized model

5.2.1 Efficient implementation requirements

Since the major part of time in the vectorized execution model tends to be spent
in the data processing primitives, it is important to provide efficient implemen-
tation of these. For optimal performance, the vectorized primitives need to meet
a set of requirements described in this section. While not every data processing
operation can have all the described features, the following sections introduce a
set of optimization techniques that make it possible for most operations to get
many of these benefits.

5.2.1.1 Bulk processing

To achieve the computational efficiency described in Section 5.1.4, data process-
ing primitives should follow the idea of bulk processing – performing the same
operation for multiple tuples independently. To achieve this, the primitives need
to meet some criteria that can be seen as task independence at various levels of
processing:

primitive independence - the first step is to make the primitives process
multiple data items in one function call, without the need to communicate
with other primitives.

operation independence - if processing of one tuple is independent from
other ones, the same computation can be in parallel executed for multiple
tuples. This has benefits for super-scalar execution on modern CPUs, and
provides SIMD opportunities.

CPU instruction independence - when processing a given tuple, it is im-
portant that separate CPU instructions performing the operation are in-
dependent. Otherwise, it is possible that execution hazards described in
Section 2.1.5 cause“pipeline bubbles”, damaging the performance.

5.2.1.2 Data location and organization

The location of data that a primitive processes can have a significant impact on
the execution performance, as demonstrated in Section 4.2.2. Even with fully
sequential access, reading and writing data to main memory is significantly
more expensive than performing the operation in the CPU cache. Therefore, it
is crucial to minimize RAM accesses and focus on in-cache execution.

Section 5.2: Implementing the vectorized model 95

 0.01

 0.1

 1

 10

1 32 1 32K 1M

E
xe

cu
tio

n
tim

e
(s

ec
)

Vector size (tuples)

Total
time

icc -O0

 1

 10

 100

1 32 1 32K 1M

O
pe

ra
tio

n
tim

e
(c

yc
le

s/
tu

pl
e)

Vector size (tuples)

Memory-intensive
primitive

icc -O1

1 32 1 32K 1M

Vector size (tuples)

Cache-intensive
primitive

icc -O2

Figure 5.3: Impact of compiler optimizations on execution

Another issue is data organization. While MonetDB/X100 uses column-
based structures for passing the data between operators, for some tasks row-
based organizations are beneficial, as presented in Section 5.2.2. As a result, for
different cases, varying in the type of operation, but also in data properties,
different data organizations should be used for optimal performance.

5.2.1.3 Compiler optimization amenability

Another important factor for a high-performance primitive is its amenability
to compiler optimizations. As mentioned in Section 5.1.1, the computation-
intensive primitives in MonetDB/X100 result in a larger higher benefit of com-
piler optimizations higher than in the interpretation-intensive code found in the
traditional database engines.
For better analysis of this issue, Figure 5.3 demonstrates the performance of

the query from Section 4.2.2 dissected into total time (left), mul1 performance
(middle) and add1 performance (right). Three icc compiler optimization levels
have been used: -O0, with optimizations disabled; -O1, with basic optimizations;
-O2, with more optimizations, including exploiting SIMD instructions. First
observation is that compiler optimization adds very little performance for small
vector sizes – even with -O2 the benefit is less than 50% improvement. The
reason for this is that in this situation the execution time is dominated by

96 Chapter 5: Vectorized execution model

function calls, which are hard to optimize, as they cannot be inlined. For larger
vector sizes, the time spent in data-intensive primitives is relatively longer, and,
since these primitives are more amenable to the compiler optimizations, the
optimization impact increases.

Detailed analysis of the per-primitive optimizations effect shows that for
memory-intensive mul1 primitive the use of SIMD instructions does not improve
performance. This is caused by this primitive being memory-bound. On the
other hand, for the cache-intensive add1 primitive, SIMD instructions provide
a significant performance improvement, especially visible when the data stays
in the L1 cache – the per-tuple cost can be even below a single CPU cycle.
As a result, with optimal vector sizes, the properly compiled code can be over
10 times faster. However, the code needs to provide a relatively simple access
pattern to allow such level of improvement.

5.2.1.4 Conclusion

The results in this section show that single improvements provide only a limited
benefit. With small vector sizes, the benefits of bulk-processing are minimal, also
reducing the impact of compiler optimization. In-cache data placement does not
result in an improvement if the executing code is unoptimized, as the data-access
cost is not the dominating factor anymore. And finally, the benefit of the bulk
processing is significantly smaller for the non-cached, unoptimized code. As a
result, a combination of all discussed properties is required for highly efficient
code.

5.2.2 Choosing the data organization models

As discussed in Section 4.2.1.1, MonetDB/X100 uses single-dimensional vectors
for data exchange between the operators. This section demonstrates that this
layout is beneficial for sequential data access, which is an approach typically
used by operators to consume and produce (but not necessarily process) data.
It also discusses a number of other scenarios, where, depending on the operation
and data location, either DSM or NSM can be beneficial. Finally, we outline the
possibility of combining both models during the execution of a single query for
an additional performance improvement. For more details on the issues described
in this section, the reader is referred to [ZNB08].

Section 5.2: Implementing the vectorized model 97

5.2.2.1 Block-data representation models

When discussing the performance between NSM and DSM, it is important to
define the used implementation of both models. The internal structure of sys-
tems following the same general model can vary significantly, by using different
approaches to variable-width datatype storage, NULLs, compression etc. Fol-
lowing the block-oriented processing model of MonetDB/X100, we focus on the
representation of entire blocks of tuples.

DSM representation. Traditionally, the Decomposed Storage Model [CK85]
proposed for each attribute column to hold two columns: a surrogate (or object-
id) column and a value column. Modern column-based systems [BZN05, SAB+05]
choose to avoid the former column, and use the natural order for the tuple reor-
ganization purposes. As a result, the table representation is a set of simple value
arrays, each containing consecutive values from a different attribute. This for-
mat is sometimes complicated e.g. by not storing NULL values and other forms
of data compression [ZHNB06, AMF06], but we assume that on the query exe-
cution level data is normalized into a contiguous sequence of values. This results
in the following simple code to access a specific value in a block:

value = attribute[position];

NSM representation. The exact tuple format in NSM can be highly com-
plex, mostly due to storage considerations. For example, NULL values can be
materialized or not, variable-width fields result in non-fixed attribute offsets,
values can be stored explicitly or as references (e.g. dictionary compression or
values from a hash table in a join result). Even fixed-width attributes can be
stored using variable-width encoding, e.g. length encoding [WKHM00] or Mi-
crosoft’s Vardecimal Storage Format [AD07].
Most of the described techniques have a goal of reducing the size of a tuple,

which is crucial for disk-based data storage. Unfortunately, in many cases, such
tuples are carried through into the query executor, making the data access
and manipulation complex and hence expensive. In traditional tuple-at-a-time
processing, the cost of accessing a value can be acceptable compared to other
overheads, but with block processing, handling complex tuple representations
can consume the majority of time.
To analyze the potential of NSM performance, we define a simple structure

for holding NSM data, which results in a very fast access to NSM attributes.
Tuples in a block are stored contiguously one after another. As a result, tuple

98 Chapter 5: Vectorized execution model

offset in a block is a result of the multiplication of the tuple width and its
index. Attributes are stored ordered by their widths (wider first). Assuming
attributes with widths of power of 2, this makes every value naturally aligned
to its datatype within the tuple. Additionally, the tuple is aligned at the end to
make its width a multiple of the widest stored attribute. This allows accessing a
value of a given attribute at a given position in the table with this simple code:

value = attribute[position * attributeMultiplier];

Direct vs. Indirect Storage. Variable-width datatypes such as strings can-
not be stored directly in arrays. A solution is to represent them as memory
pointers into a heap. In MonetDB/X100, a tuple stream containing string val-
ues uses a list of heap buffers that contain concatenated, zero-separated strings.
As soon as the last string in a buffer has left the query processing pipeline, the
buffer can be reused.
Indirect storage can also be used to reduce value copying between the oper-

ators in a pipeline. For instance, in MonetDB/X100, the Select operator leaves
all tuple-blocks from the data source operator intact, but just attaches an array
of selected offsets, called the selection vector. All primitive functions support
this optional index array:

value = attribute[selection[position]];

Other copy-reduction mechanisms are possible. For example, MonetDB/X100
avoids copying result vectors altogether if an operator is known to leave them
unchanged (i.e. columns that just pass through a Project or the left side of an
N-1 Join).
Note that the use of index arrays (selection vectors) is not limited to the

Select operator. Other possibilities include e.g. not copying the build-relation
values in a HashJoin, but instead storing references to them. In principle, each
column could have a different (or no) selection vector. This brings multiple op-
timization opportunities and challenges. For example, a single primitive can be
implemented assuming fully independent selection vectors, or provide optimized
code for cases where some of the selection vectors are shared. This might pro-
vide extra performance, but can significantly increase code size and complexity.
For this reason, these optimizations are not yet exploited in MonetDB/X100:
all columns in a dataflow share the same selection vector information.

Section 5.2: Implementing the vectorized model 99

 0.1

 1

 10

 100

 1 32 1K 32K 1M

N
an

os
ec

on
ds

 p
er

 o
pe

ra
tio

n
(lo

g
sc

al
e)

Vector size (tuples, log scale)

DSM-SIMD
DSM

NSM-1
NSM-2

NSM-4
NSM-8

NSM-16
NSM-32

Figure 5.4: Sequential access bench-
mark: an ADD routine using DSM
and NSM with varying tuple widths

 1

 10

 100

 1 32 1K 32K 1M
N

an
os

ec
on

ds
 p

er
 o

pe
ra

tio
n

(lo
g

sc
al

e)
Hash-table size (tuples, log scale)

DSM
DSM prefetched

NSM
NSM prefetched

Figure 5.5: Random access bench-
mark: 4 aggregations using a varying
number of aggregation groups

5.2.2.2 NSM and DSM in-memory performance

This section demonstrates how the choice of storage model influences the perfor-
mance of a given operation. The experimental platform used in the microbench-
marks is a Core2 Quad Q6600 2.4GHz CPU with 8GB RAM running on Linux
with kernel 2.6.23-15. The per-core cache sizes are: 16KB L1 I-cache, 16KB L1
D-cache and 4MB L2 cache (shared among 2 cores).

Sequential data access. Figure 5.4 present the results of the experiment in
which a SUM aggregate of a 4-byte integer column is computed repeatedly in a
loop over a fixed dataset. The size of the data differs, to simulate different block
sizes, which allows identifying the impact of the interpretation overhead, as well
as the location (cache, memory) in block-oriented processing. We used GCC,
using standard (SISD) processing, and additionally ICC to generate SIMD-ized
DSM code (NSM does not benefit from SIMD-ization since the values to operate
on are not adjacent). In the NSM implementation, we use tuples consisting of a
varying number of integers, represented with NSM-x.
To analyze the impact of the data organization on CPU efficiency, we look at

the performance of NSM-1, which has exactly the same memory access pattern

100 Chapter 5: Vectorized execution model

and requirements as the DSM implementations. The results show that DSM,
thanks to a simpler access code, can provide a significant performance benefit,
especially in the SIMD case.
The other aspect of this benchmark is the impact of the interpretation over-

head and data location. While for small block sizes the performance is dominated
by the function calls2, for larger sizes, when the data does not fit in the L1 cache
anymore, the data location aspect becomes crucial.
Looking at the performance of wider NSM tuples, we see that the perfor-

mance degrades with increasing tuple width. As long as the tuples are in L1,
the performance of all widths is roughly equal. However, for NSM-16 and higher
(64 byte tuples or longer) once the data shifts to L2, the impact is immediately
visible. This is caused by the fact that only a single integer from the entire
cache-line is used. For NSM-2 to NSM-8, the results show that the execution is
limited by the L2 bandwidth: when a small fraction of a cache-line is used (e.g.
NSM-8) the performance is worse than when more integers are touched (e.g.
NSM-2). Similar behavior can be observed for the main-memory datasets.
We see that if access is purely sequential, DSM outperforms NSM for multiple

reasons. First, the array-based structure allows simple value-access code. Second,
individual primitive functions (e.g. SUM, ADD) use cache lines fully in DSM,
and L2 bandwidth is enough to keep up. As mentioned before, during query
processing, all tuple blocks used in a query plan should fit the CPU cache. If
the target for this is L2, this means significantly larger block sizes than if it
were L1, resulting in a reduced function call overhead. Finally, the difference in
sequential processing between DSM and NSM can be huge if the operation is
expressible in SIMD, especially when the blocks fit in L1, and is still significant
when in L2.

Random data access. Figure 5.5 demonstrates an experiment investigating
the random-access performance. An input table consists of a single key column
and 4 data columns, contains 4M tuples, and is stored in DSM for efficient
sequential access. The range of the key column differs from 1 to 4M. We perform
an experiment equivalent to this SQL query:

SELECT SUM(data1), ..., SUM(dataN)
FROM TABLE GROUP BY key;

2In a real DBMS the overhead of function calls and other interpretation is significantly
larger [BZN05] – this was a hard-coded micro-benchmark.

Section 5.2: Implementing the vectorized model 101

To store the aggregate results, we use a simple array with the key column as a
direct index into it. In DSM, the result table is just a collection of arrays, one
for each data attribute. In NSM, it is a single array of a size equal to the number
of tuples multiplied by 4 (the number of data attributes). In each iteration, all
values from different data attributes are added to the respective aggregates,
stored at the same index in the table.
The faster access code of the DSM version makes it slightly (up to 10%) faster

than NSM as long as the aggregate table fits in the L1 cache. However, once
the data expands into L2 or main-memory, the performance of DSM becomes
significantly worse than that of NSM. This is caused by the fact that in DSM
every memory access is expected to cause a cache-miss. In contrast, in NSM, it
can be expected that a cache-line accessed during processing of one data column,
will be accessed again with the next data column in the same block, as all the
columns use the same key position.
Figure 5.5 also shows experiments that use software prefetching: we inter-

spersed SUM computations with explicit prefetch instructions on the next tuple
block. The end result is that prefetching does improve NSM performance when
the aggregate table exceeds the CPU caches, however in contrast to [CAGM07]
we could not obtain a straight performance line (i.e. hide all memory latency).
In general, our experience with software prefetching indicates that it is hard to
use, machine-dependent, and difficult to tune, which makes it hard to apply it
in generic database code.

5.2.2.3 Choosing the data model

The results from the previous section suggest that DSM should be used for all
sequentially-accessed data as well as for randomly-accessed data that fits in the
L1 cache, and NSM should be used for randomly-accessed data that does not
fit in L1. Other model-specific optimizations might influence the choice of the
used date layout. For example, in [HNZB07, ZNB08] the authors demonstrate
an NSM-based technique that uses SIMD instructions to perform aggregation
of values from different columns at the same time. Row-storage has also been
exploited in [JRSS08] to compute multiple predicates on different columns in
parallel. These optimizations demonstrate that the choice of a particular data
layout while enabling some optimizations, might make other ones impossible.
This problem can be partially reduced by on-the-fly format conversion, imple-
mented either as a side-effect of performing some operation (e.g. a SUM routine
reading NSM and producing DSM), or as an explicit phase [ZNB08]. Still, this
approach increases the complexity of the query plan significantly and incorpo-

102 Chapter 5: Vectorized execution model

rating it inside an operator pipeline is an interesting challenge.
In MonetDB/X100 DSM is currently used as the only data exchange format

between the operators. This is motivated by the observation that operators
typically consume and produce their outputs in a sequential manner. Internally,
the operators have a flexibility to choose a storage model most fitting the needs
of a used algorithm. Currently, it is typically DSM, but it is expected that the
future versions of e.g. HashJoin operator will be able to work with both NSM-
and DSM-based data structures.

5.2.3 Decomposing data processing

The core of the vectorized system architecture is the separation of the control
logic performed by the operators and the raw data processing performed in
primitives. As a result, a methodology to convert a traditional algorithm im-
plementation into a vectorized form is necessary. This problem is close to query
compilation for the binary algebra of MonetDB [BK99], but it is different in the
following aspects: since it needs to be adapted to the pipelined model, it goes
even deeper in the operator decomposition, and additionally needs to handle
the N-ary nature of the operators. As a result, expressing complex relational
operators in a vectorized model is a challenge in itself.

5.2.3.1 Multiple-attribute processing

One of the main benefits of vectorized processing is the high efficiency of the
primitives. To achieve this efficiency, however, the primitives are allowed very
little (or no) degree of freedom - a single routine can only perform one specific
task on a defined set of input types. As a result, usually a primitive is applied
to perform a given function on just one or two attributes. This is enough in
many cases, e.g. in the Project operator, which only adds new columns without
the need for manipulating existing ones. However, in many operators, e.g. in
aggregation and joins, multiple attributes need to be handled.
A typical approach to this problem is to separate the processing into two

phases: one that computes some form of an index structure that is common for all
attributes, and the second that uses this structure to perform some computation
per attribute. For example, in hash-aggregation [ZHB06], first a position in the
hash-table for each tuple is computed using all aggregate keys, and then each
aggregate function is computed using it. A similar approach can be used in other
operators: in hash-join and merge-join two aligned index-vectors are created,

Section 5.2: Implementing the vectorized model 103

defining matching pairs of tuples in the input relations; in radix-sort the bucket
id is computed for each tuple and used to copy non-key attributes; etc.

5.2.3.2 Phase separation

Tuple-at-a-time implementations of most operators contain control logic that
is hard or impossible to embed in a single efficient primitive. An example for
aggregation using cuckoo-hashing has been presented in [ZHB06]. Here we will
present a vectorization process for a different operator: Top-N. Let us take a
look at the pseudocode for each tuple in a heap-based Top-N implementation:

if (tuple.key > heap.minimum) {
position = heap.insert(tuple.key);
heap.values.copy(tuple, position);

}

Here, heap has a separate values section that contains tuple attributes not
taking part in the actual heap processing. This code can be decomposed into
two separate vectorized parts:

selected = select_bigger(input[key], heap.minimum);
heap.process(selected)

The initial selection can easily be vectorized for multi-attribute keys. This ap-
proach can result in false-positives – tuples that will not enter the heap because a
tuple earlier in the same vector increased the heap minimum. Still, in most cases,
a large majority of tuples is filtered out with a highly efficient select bigger
function, making the cost of an additional check in the later phase negligible.
The next step is to decompose heap.process into separate primitives (ignoring
false-positives for simplicity):

positions = heap.insert(input[key], selected);
foreach attribute
heap.values[attribute].copy(input[attribute], positions);

Here, heap.insert for each input tuple returns its position in the value area
(freed by the expelled tuple), and the copy() routine copies all values for a
given attribute into their positions in the values section.

5.2.3.3 Branch separation

The next issue in operator decomposition is handling situations where different
processing steps are taken for each tuple. An example of such a situation is

104 Chapter 5: Vectorized execution model

hash-aggregation using a bucket-chained hash-table. Code for each tuple looks
as follows:

key = tuple.values[KEY];
hash = computeHash(key);
group = hash % num_groups;
idx = buckets[group];
while (idx != NULL) {
if (key_values[idx] == key)
break;

idx = next[idx];
}
if (idx == NULL)

idx = insert(group, key);
foreach aggregate
compute_aggr(aggregate, idx, tuple);

The presented code is branch-intensive, making it hard for bulk processing.
This problem has been identified in the context of software memory prefetching
for hash-table processing, where authors annotate each tuple with a special
state-identifier, and later combine stages at the same positions in different code-
paths into a single stage, using tests on the tuple states to determine the actual
code to execute [CAGM04]. A related technique allowing handling this issue
is separating the input tuples that are at the same stage of processing into
groups. Such a technique can be applied to our aggregation code, resulting in
the following vectorized version:

keys = input.columns[KEY];
hashes = map_hash(n, keys);
groups = map_modulo(n, hashes, num_groups);
idxs = map_fetch(n, groups, buckets);
searched = vec_sequence(n); // 0,1,...,n-1
misses = vec_empty();
found = vec_empty();
do {
separate_misses(searched, misses, idxs);
separate_found(searched, found, key_values, keys, idxs);
follow_list(searched, next, idxs);

} while (searched.not_empty());
insert_misses(misses, idxs)
foreach aggregate
compute_aggr(aggregate, idxs, input);

Here, separate misses() extracts all tuples from searched for which idxs
points to the end of the list, and saves them in misses. Then, separate found()
extracts all tuples, for which the bucket has been found (key matches). Finally,
follow list() updates bucket pointers in idxs with the next bucket in the
linked list for all tuples that are neither determined as nulls nor found. This

Section 5.2: Implementing the vectorized model 105

process repeats while there is some tuple that needs to follow the list. Finally,
all tuples in misses are inserted into the hash table, and their bucket indices are
saved in idxs (we omit the details of this phase, but it needs to take care of du-
plicate keys in misses). Such code is beneficial for performance for two reasons:
there are fewer but longer loops, and the loop code is simpler, allowing effi-
cient execution. A vectorized hash-join implementation presented in Section 5.3
follows this approach, achieving performance comparable with a hand-written
solution.

5.2.4 Primitive implementation

Once the data processing functionality is separated into primitives, the next task
is to provide efficient implementations of these. In this section we analyze how to
approach the problem of primitive implementation and discuss the programming
techniques that allow development of CPU-friendly routines.

5.2.4.1 Primitive development and management

Due to the high primitive specialization along the data type, data representa-
tion and other dimensions, the number of different routines can be very high,
making the manual implementation impractical. As a result a special language
for describing primitives should be used. For example, in the MonetDB/X100
kernel, ca. 3000 lines of the Mx macro language are expanded into ca. 185.000
lines of C code implementing almost 3000 different functions.
The approach described in Section 4.2.1.3 results in a single function for

each primitive signature. However, it is very well possible that on various hard-
ware and compilation platforms different implementations of the same task can
provide different performance, without a single multi-platform winner. For ex-
ample, one CPU family can provide SIMD operations of some type, another
can allow explicit memory prefetching, and yet another can have both capabili-
ties – all these platforms might require different implementation approaches for
optimal performance. This problem is addressed e.g. in an open-source LibOIL
library [Lib] that provides multiple specialized implementations for a small set of
typical data processing tasks, and at runtime determines which one to use based
on CPU capabilities and micro-benchmarks. A vectorized DBMS can follow this
approach to optimize performance of primitives that are execution bottlenecks.
This idea can be extended even further to exploit dynamic data properties. For
example, in the Select operator different approaches can be optimal depending

106 Chapter 5: Vectorized execution model

on the selectivity [Ros02], and the runtime optimizer can dynamically choose
the best primitive implementation.

5.2.4.2 Control dependencies

Deep execution pipelines in modern CPUs cause severe performance degradation
in case of branch mispredictions. In the example code in Section 5.1.4, the
only branch taken is the loop control. While this branch is easy to predict,
hence relatively cheap, compilers usually further reduce its cost by applying
loop unrolling.
Let us look at another routine that selects out the indices of tuples bigger

than a given constant:

for (i = 0, found = 0; i < n; i++)
if (input[i] > val)
result[found++] = i;

return found;

As analyzed in [Ros02], such code is efficient only for very low or very high
selectivities due to branch mispredictions. In this case, and in many others, the
control dependency can be replaced with a data dependency, resulting in the
following routine:

for (i = 0, found = 0; i < n; i++) {
result[found] = i;
found += (input[i] > val);

}
return found;

While issuing more instructions, this approach does not have a hard-to-predict
’if’, and results in a significant performance improvement, as discussed in [Ros02]
and confirmed in Figure 5.6. Another possible approach for complex, branch-
heavy routines, is to separate tuples going into different code paths, as discussed
in Section 5.2.3.3.

5.2.4.3 Data dependencies

Some of the control-dependency solutions involve replacing them with data-
dependencies. Such dependencies can also be inherent to a data processing task.
A typical case is aggregation – for example, a routine that increases the COUNT
values stored in result looking at the group identifiers from groupids looks
like this:

Section 5.2: Implementing the vectorized model 107

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

C
P

U
 c

yc
le

s
/ t

up
le

Selectivity

control-dependency
data-dependency

Figure 5.6: Performance of control-dependency based and data-dependency
based selection routines (Core 2 Duo)

void aggr_count_int_vec_int_vec(int *result, int *groupids, int n) {
for (int i = 0; i < n; i++)
result[groupids[i]] += 1;

}

In this code, each tuple depends on the previous one, causing data stalls in the
CPU pipeline. One approach to reduce these stalls, is to use multiple copies of
the result array, and make different tuples update different versions of it.

void aggr4_count_int_vec_int_vec(int **result, int *groupids, int n) {
for (int i = 0; i < n; i += 4) {
result[0][groupids[i+0]] += 1;
result[1][groupids[i+1]] += 1;
result[2][groupids[i+2]] += 1;
result[3][groupids[i+3]] += 1;

}
}

The latter solution, while minimizing data dependencies between iterations, in-
creases the memory consumption for ’result’ arrays by a factor 4. Still, if such
extra cost is acceptable, this approach allows for a significant performance im-
provement. For example, on our Core2Duo test machine it improved the per-
formance from already very good 2.76 cycles/tuple (with 256 groups) to 2.05
cycles/tuple. On some architectures this difference can be significantly larger.
Another solution to the data dependency problem is to combine multiple op-

erations into one primitive. For example, in some scenarios, multiple aggregates
are computed at one processing stage – such a situation occurs in TPC-H query
1 [HNZB07]. Then, it is possible to compute e.g. 4 aggregates in one primitive:

void multiaggr_sum_int_vec4_int_vec(int **result, int **values, int *groupids, int n) {
for (int i = 0; i < n; i++) {

108 Chapter 5: Vectorized execution model

result[0][groupids[i]] += values[0][i];
result[1][groupids[i]] += values[1][i];
result[2][groupids[i]] += values[2][i];
result[3][groupids[i]] += values[3][i];

}
}

This solution, similarly to the previous routine, reduces the data dependen-
cies and improves the performance. One of the major problems here is the use
of the same data type for all 4 aggregations, which limits its applicability. Still,
in scenarios like data mining, with queries often computing dozens of aggregates
at once, this technique can be beneficial.

5.2.4.4 SIMDization

SIMD instructions allow processing multiple elements with one CPU instruction.
Originally, they were designed to improve multimedia processing and scientific
computing, but they have also been suggested for the databases [ZR02]. While
having a large potential, SIMD instructions suffer from two limitations impor-
tant for database processing. First, usually SIMD instructions can only operate
on a set of values sharing the same data type, and the data types are usually lim-
ited to 32/64 bit integers and floats. Secondly, in most ISAs, SIMD write/load
instructions usually do not have scatter/gather functionality, making them only
useful for fully sequential data processing.
Overcoming the problem of datatypes is sometimes possible by casting a

column to a different datatype (e.g. a character into an integer, or a float into a
double). As for the strict sequential data locality, one of the solutions is to use an
alternative data representation. In the previous example we used data storage
known in the SIMD world as Structure-of-Arrays (SOA). It is possible to further
extend it to use ’Array-of-Structures’ (AOS), as presented in Figure 5.7. Note
a parallel between SOA-AOS and DSM-NSM. AOS can be seen as a subset of
NSM that holds data tightly packed for efficient SIMD processing. This approach
has been previously presented in the context of database processing on the Cell
processor [HNZB07]. As a result, our multi-aggregation code from the previous
section becomes:

void multiaggr_sum_int4_vec_int_vec(int4 *result,
int4 *values, int *groupids, int n) {

for (int i = 0; i < n; i++)
result[groupids[i]] = SIMD_add(result[groupids[i]], values[i]);

}

Section 5.3: Case study: Hash-Join 109

struct int_vec4 { struct int4 {
int attrA[1024]; int attrA;
int attrB[1024]; int attrB;
int attrC[1024]; int attrC;
int attrD[1024]; int attrD;

}; };
int_vec4 data; int4 data[1024];

Figure 5.7: ’Structure-of-Arrays’ (SOA, left) and ’Array-of-Structures’ (AOS,
right)

5.3 Case study: Hash-Join

This section demonstrates how presented techniques can be used to implement a
vectorized version of a hash-join, one of the most important database algorithms.
Initially, we present a relatively straightforward hash-join implementation – the
next section will introduce a set of additional optimizations.

5.3.1 Problem definition

Hash-join is one of the physical implementations of the relational equi-join op-
erator, which is a specialization of the generic join operator. Formally, any join
between relations R and S can be represented as: R 1ϕ S = σϕ(R×S). Here, ϕ is
a join condition, for equi-join represented as: ϕ ≡ (rkey1 = skey1∧ ...∧ rkeyn =
skeyn), where rkeyi and skeyi are the key attributes from R and S respectively.
The most often used version of an equi-join is an N-1 join, where keys in S are
unique, and for every tuple in R there is exactly 1 matching tuple in S. We will
assume this type of join in the remainder of this section.

5.3.2 Standard implementation

In the hash-join, first a build relation S is used to construct a hash-table con-
taining all the tuples from S indexed on the key of S. In the second phase, the
key of every tuple from the probe partition R is looked up in that hash-table,
and the result tuples are constructed. The following code performs the described
process for a simple case, where the input relations build and probe, each with
three attributes are joined, where the first two attributes (0 and 1) constitute
the key. The data is stored as simple arrays, and a new, two-column result
relation is produced containing only the values of the non-key attribute from

110 Chapter 5: Vectorized execution model

first values[0]next

#k
ey

s+
1

input

1

3

4

2

3

4

reserved

312

129

312
234

875

234

columns

0

additional value129
875

1

1
0
0
0
x2

0
3
0
4

x
0

2

Figure 5.8: Simple bucket-chained hash table, using modulo 5 as a hash function

both inputs. We use a simple bucket-chained hash-table, presented in Figure 5.8.
Here, the next array represents the linked list of all tuples falling into a given
bucket, with a value 0 reserved for the end of the list.

// Build a hash table from "build"
for (i = 0; i < build.size; i++) {
bucket = rehash(hash(build.values[0][i]), build.values[1][i]) & mask;
hashTable.values[0][i + 1] = build.values[0][i];
hashTable.values[1][i + 1] = build.values[1][i];
hashTable.values[2][i + 1] = build.values[2][i];
hashTable.next[i + 1] = hashTable.first[bucket];
hashTable.first[bucket] = i + 1;

}
// Probe the "probe" relation against the hash table
for (i = 0; i < probe.size; i++) {
bucket = rehash(hash(probe.values[0][i]), probe.values[1][i]) & mask;
current = hashTable.bucket[bucket];
while (hashTable.values[0][current] != probe.values[0][i] || // assume eventual hit

hashTable.values[1][current] != probe.values[1][i]) {
current = hashTable.next[current];

}
result.values[0][i] = probe.values[2][i];
result.values[1][i] = hashTable.values[2][current];

}

Note that this is a hard-coded implementation for double-key, single-value
relations with known attribute data types. A real system needs to be able to
perform a join on any combination of relations, including multi-key attributes
with different data types, as well as different numbers of attributes. Clearly,
even using macro expansions, providing the hard-coded version for all the input
combinations is impossible. The following section will demonstrate how, look-
ing at this algorithm, a generic high-performance vectorized operator can be
realized.

Section 5.3: Case study: Hash-Join 111

5.3.3 Vectorized implementation

The vectorized implementation of the hash-join should be able to consume entire
vectors with tuples and process them following the principles discussed in Sec-
tion 5.2.1. The implementation in MonetDB/X100 provides most of the desired
properties, and is based on the following observations:

• During the build phase, the processing for different tuples in a vector is
not fully independent. If multiple keys fall into the same bucket, they need
to be processed one after another. This can cause some data dependency,
but it is not possible to avoid it with this hash table organization.

• During the probe phase, processing of different tuples is fully independent,
thanks to the assumption of the N-1 join: each probe tuple generates
exactly one result tuple, hence the location of each result tuple is known.

• Finding the position in the hash table is a one-time investment for every
tuple, during both build and probe phases. Once done, it allows quick
insertion or lookup of multiple attributes.

• Following the linked list in the inner loop during the probe phase might
take different number of steps for different tuples. Also, it introduces data
and control dependencies, which are bad for modern CPUs, and makes
it impossible for this code to overlap the cache misses that might occur
during the linked list traversal.

5.3.3.1 Build phase

The vectorized implementation of the build phase follows closely the hard-coded
version presented above, but uses vectors of size n as input and allows arbitrary
column combinations in the input. The simplified code is as follows:

// Input: build relation with N attributes and K keys
// 1. Compute the bucket number for each tuple, store in bucketV
for (i = 0; i < K; i++)
hash[i](hashValueV, build.keys[i], n); // type-specific hash() / rehash()

modulo(bucketV, hashValueV, numBuckets, n);
// 2. Prepare hash table organization, compute each tuple position in groupIdV
hashTableInsert(groupIdV, hashTable, bucketV, n)
// 3. Insert all the attributes
for (i = 0; i < N; i++)
spread[i](hashTable.values[i], groupIdV, build.values[i], n);

112 Chapter 5: Vectorized execution model

The first task during the build phase is to find the bucket number for each
build tuple. To support processing of arbitrary number and combination of key
attributes, this phase is decomposed into a set of steps, as follows:

• Compute the hashValueV vector using a hash* (e.g. hash slng) primitive
computing a type-specific hash-function, using the first key column as a
parameter.

• Adjust the hashValueV vector by applying a type-specific rehash* primi-
tive that combines an existing hash value with a hash value for the second
key column. Repeat for the remaining key columns.

• Compute the bucketV vector containing the bucket number for each tuple
using a modulo (or and) primitive.

The resulting bucketV is the vectorized equivalent of the bucket variable in
the previous section. Having this, it is possible to apply the insertion process to
all tuples, In step 2 in the algorithm, the hash-table organization is prepared by
adjusting the first and next arrays:

hashTableInsert(groupIdV, hashTable, bucketV, n) {
for (i = 0; i < n; i++) {
groupIdV[i] = hashTable.count++;
hashTable.next[groupIdV[i]] = hashTable.first[bucketV[i]];
hashTable.first[bucketV[i]] = groupIdV[i];

}
}

At the same time, the groupIdV vector is computed, holding for each input tuple
its position in the hash table. In step 3, all the input attributes are inserted into
the matching positions in the hash table with type specific spread functions:

spread(hashTableValues, groupIdV, inputValues, n) {
for (i = 0; i < n; i++)
hashTableValues[groupIdV[i]] = inputValues[i];

}

5.3.3.2 Probe phase

The probe phase has two problems making it especially challenging. First, dur-
ing the linked list traversal, equality comparisons can be arbitrarily complex,
depending on the key structure. Secondly, the linked list traversal seems to re-
quire a per-tuple loop that would internally need to perform this complicated
equality check.

Section 5.3: Case study: Hash-Join 113

In the MonetDB/X100 implementation of this phase we exploit the fact
that while the inner loop length for different tuples can significantly differ, the
number of steps is limited, and most tuples need to check only one or two
elements in the hash table. This allows us to modify the way the linked list is
traversed for all the tuples. We first find the first element in the list for every
tuple. Then, we compare if these elements match our probe keys. For tuples
that have a value difference, we find the next element in the list and repeat the
process.

// Input: probe relation with M attributes and K keys, hash-table containing
// N build attributes
// 1. Compute the bucket number for each probe tuple.
// ... Construct bucketV in the same way as in the build phase ...
// 2. Find the positions in the hash table
// 2a. First, find the first element in the linked list for every tuple,
// put it in groupIdV, and also initialize toCheckV with the full
// sequence of input indices (0..n-1).
lookupInitial(groupIdV, toCheckV, bucketV, n);
m = n;
while (m > 0) {
// 2b. At this stage, toCheckV contains m positions of the input tuples for
// which the key comparison needs to be performed. For each tuple
// groupIdV contains the currently analyzed offset in the hash table.
// We perform a multi-column value check using type-specific
// check() / recheck() primitives, producing differsV.
for (i = 0; i < K; i++)
check[i](differsV, toCheckV, groupIdV, hashTable.values[i], probe.keys[i], m);

// 2c. Now, differsV contains 1 for tuples that differ on at least one key,
// select these out as these need to be further processed
m = selectMisses(toCheckV, differV, m);
// 2d. For the differing tuples, find the next offset in the hash table,
// put it in groupIdV
findNext(toCheckV, hashTable.next, groupIdV, m);

}
// 3. Now, groupIdV for every probe tuple contains the offset of the matching
// tuple in the hash table. Use it to project attributes from the hash table.
// (the probe attributes are just propagated)
for (i = 0; i < N; i++)
gather[i] (result.values[M + i], groupIdV, hashTable.values[i], n);

5.3.3.3 Performance

We have experimentally analyzed the performance of the presented algorithm
by comparing it with the hard-coded routines presented in the previous section.
The performance of the vectorized implementation is tested with 2 vector sizes:
1 tuple, which simulates tuple-at-a-time approach, and 1024 tuples. Two 2- and
3-attribute relations were used, with 1- and 2-attribute keys, respectively. The
probe relation always contains 4M tuples, all having a matching key in the build

114 Chapter 5: Vectorized execution model

 10

 30

 100

 300

 1000

 3000

 10000

 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
ill

is
ec

on
ds

 (
lo

gs
ca

le
)

Build relation size (tuples, logscale)

1-column join key

MonetDB/X100, vsize=1
MonetDB/X100, vsize=1024

hard-coded
 10

 30

 100

 300

 1000

 3000

 10000

 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
ill

is
ec

on
ds

 (
lo

gs
ca

le
)

Build relation size (tuples, logscale)

2-column join key

MonetDB/X100, vsize=1
MonetDB/X100, vsize=1024

hard-coded

Figure 5.9: Comparison of a hard-coded hash-join implementation with the
generic vectorized implementation in MonetDB/X100 (Core 2 Quad, 2.4GHz)

relation. The build relation, and hence the hash table, contains from 16 to 4M
tuples with unique keys.
As Figure 5.9 shows, for cache-resident hash tables the performance of the

generic MonetDB/X100 version is only ca. 2 times slower than hard-coded, spe-
cialized implementation. Surprisingly, once the hash table does not fit in the
cache anymore, MonetDB/X100 implementation is faster than the hard-coded
one. This is caused by the fact that all the operations in the vectorized ver-
sion are independent, allowing e.g. overlapping of main-memory accesses. In the
hard-coded version, control- and data-dependencies do not allow it, making the
impact of cache-misses higher. The tuple-at-a-time implementation suffers from
significant interpretation overhead, but is also less sensitive to the hash-table
size. As a result, while the vectorized version provides a 30-times improvement
for cache-resident data, this improvement goes down to factor 7 on memory-
resident data. This demonstrates the importance of combining CPU-efficient
vectorized execution with cache-optimized data placement, discussed in the next
section.

5.4 Optimizing Hash-Join

The vectorized hash-join implementation demonstrated in the previous section
achieves high in-cache efficiency, but suffers from significant performance degra-

Section 5.4: Optimizing Hash-Join 115

dation when working on RAM-resident data, caused by random memory accesses
related to the linked list traversal. This problem can be reduced by using hashing
methods that do not need a linked list, for example cuckoo hashing [PR04], as
discussed in [ZHB06]. Still, even with this improvement the overhead of cache-
misses can dominate the cost of per-tuple processing. Two main techniques were
previously proposed to address this problem.
The first technique, proposed by Chen et al., uses explicit memory prefetch-

ing instructions inside the hash lookup routine [CAGM04]. This transforms
hash-lookup throughput from a memory latency-limited into a memory band-
width-limited workload, which can strongly improve overall hash-join perfor-
mance. Our CPU-optimized hashing, however, has become too fast for memory
bandwidth. Optimized cuckoo-hashing implementation from [ZHB06] spends
only 7 CPU cycles per lookup and touches at least two cache lines. On a 1.3GHz
CPU this implies bandwidth usage of 24GB/s, which exceeds the available RAM
bandwidth. For that reason, we employ the second technique, based on hash-
table partitioning. This idea was originally introduced for I/O based hashing in
Grace Join [FKT86] and Hybrid Hash Join [DKO+84] algorithms. More recently,
with Radix-Cluster [MBK02], this work has been extended to hash-partitioning
into the CPU cache.
The problem with these partitioned hashing techniques is that all the data

needs to be first fully partitioned, and only then processed [Gra93]. This works
fine in the disk-based scenario, as the temporary space for the partitions is usu-
ally considered unlimited. Main memory capacity, however, cannot be assumed
to be unlimited, meaning that if the data does not fit in RAM during parti-
tioning, it has to be saved to disk. Since using the disk when optimizing for
in-cache processing is reasonable only in extreme scenarios, we propose a new
hash partitioning algorithm that, while providing in-cache processing, prevents
spilling data to disk.

5.4.1 Best-Effort Partitioning

Best-effort partitioning (BEP) is a technique that interleaves partitioning with
execution of hash-based query processing operators without using I/O. The key
idea is that if the available partition memory is filled, data from one of the
partitions is passed on to the processing operator (aggregation, join), freeing
space for more input tuples. In contrast to conventional partitioning, BEP is a
pipelinable operator that merely reorders the tuples in a stream so that many
consecutive tuples come from the same partition. Operators that use BEP, like
Partitioned Hash Join and Partitioned Hash Aggregation, create a separate

116 Chapter 5: Vectorized execution model

InitBuffers(numBuffers)
while tuple = GetNextTuple(child)
| p = Hash(tuple) mod numPartitions
| if MemoryExhausted(p)
| | if NoMoreBuffers()
| | | maxp = ChooseLargestPartition()
| | | ProcessPartition(maxp)
| | | FreeBuffers(maxp)
| | AddBuffer(p)
| Insert(p, tuple)
for p in 0..numPartitions− 1
| ProcessPartition(p)
| FreeBuffers(p)

Figure 5.10: Best-Effort Partitioning (BEP) algorithm

hash table per partition, and detect which hash table should be used at a given
moment looking at the input tuples. When one of the hash tables is active, the
operations on it are performed for many consecutive tuples, hence the cost of
loading the hash-table into the cache is amortized among them.
Interestingly, the consuming operator can still benefit from BEP even with

a single hash table, because of improved temporal locality of accesses. Still, the
benefit will be significantly smaller, as memory related to the current partition
is not “dense”, and some space in fetched cache lines might be wasted by data
of the other partitions.
An algorithm from Figure 5.10 presents an implementation where each par-

tition consists of multiple buffers. When no more buffers are available, we choose
the biggest partition to be processed, for two reasons. Firstly, it frees most space
for the incoming tuples. Secondly, with more tuples passed for processing, the
time of loading the hash-table is better amortized due to increased cache-reuse

5.4.2 Partitioning and cache associativity

The main-memory performance of data partitioning algorithms, with respect
to the number of partitions, number of attributes, sizes of the CPU cache and
TLB has been studied in [MBK02] and [MBNK04]. However, to our knowledge,
one other important property of modern cache memories has been ignored so
far: cache associativity. As discussed in Section 2.2.2, cache memories typically
are not fully associative, but rather N-way associative. As a result, for different

Section 5.4: Optimizing Hash-Join 117

0x1EE77FC0

0xA9dF7F80

0x22917FC0

cache
line

0x7F80

0x7FC0C
ac

he
 a

dd
re

ss
(c

ac
he

 s
iz

e
/ a

ss
oc

ia
tiv

ity
) 0xC54F0000

0x9AFC0040 0xA9DF0040

associativity
(LRU)

0xA9DF00000x0000

0x0040

... ...

0x54C07F80

Figure 5.11: Organization of a 64 kilobyte 2-way associative cache memory with
64-byte cache-lines

addresses with the same bits used to determine the set id there are only N possi-
ble locations in the cache. For example, Figure 5.11 presents a 2-way associative
64KB cache with 64-byte cache lines – there are 512 sets, determined by bits
6..14 (mask 0x7fc0 of the memory address, and 2 cache-lines in each set.
This limitation on the number of possible locations in the cache can signifi-

cantly influence the partitioning performance. This can be demonstrated by the
analysis of this simple partitioning function:

for (i = 0; i < n; i++) {
partno = HASH_TYPE(src[i]) & PARTITION_MASK;
dst[partno][counts[partno]++] = src[i];

}

It is a common situation that the addresses of the dst buffers are aligned to
the page size. As a result, using the cache from Figure 5.11 and a page size of
8KB, all these addresses will map onto only 4 separate cache addresses, each
holding 2 cache-lines. This means that if we partition into more than 8 buffers,
there is a high probability that, when we refer to a buffer that has been re-
cently used, the cache-line with its data has already been replaced, possibly
causing a cache-miss. Since the partitioning phase is usually performed using
hash-values, data is roughly uniformly distributed among partitions. As a re-
sult, this cache associativity thrashing may continue during the entire execution
of this primitive. Since the previous experiments with Radix-Cluster [MBK02]
were primarily performed on a computer architecture where high fan-out parti-
tioning deteriorated due to slow (software) TLB miss handling, these issues had
previously not been detected.

118 Chapter 5: Vectorized execution model

 1

 10

 100

 1000

 1 4 16 64 256 1K 4K 16K

P
er

-t
up

le
 c

os
t (

cy
cl

es
)

Number of partitions

Pentium4

memory
copy

buffers aligned

 1 4 16 64 256 1K 4K 16K

Number of partitions

Itanium2

memory
copy

buffers non-aligned

Figure 5.12: Impact of number of partitions and buffer allocation method on
partitioning performance on various hardware architectures

A simple solution for the cache associativity problem is to shift each buffer
address with a different multiple of a cache line size, such that all map to different
cache offsets. Figure 5.12 presents the performance of the partitioning phase with
both aligned and non-aligned buffers on Pentium Xeon and Itanium2 CPUs. As
the number of partitions grows, the performance of aligned buffers goes down,
quickly approaching the cost of random-memory access per each tuple. The non-
aligned case, on the other hand, manages to achieve speed comparable to simple
memory-copying even for 256 partitions. When more partitions are needed, it is
possible to use a multi-pass partitioning algorithm [MBK02]. BEP can be easily
extended to handle such a situation.

5.4.3 BEP performance

Performance of hash processing with best-effort partitioning is influenced by
a number of factors presented in Table 5.2. The first group, data and query
properties define the number of tuples stored in a hash table and their width,
determining a size of the hash table. The second group, partitioning settings,
determine the size of per-partition hash tables. Finally, the hardware factors
influence the recommended size of the small hash tables, hence the partitioning
fan-out. Moreover, cache and memory latencies influence the desirable cache-
reuse factor, which determines the amortized cost of data access.

Section 5.4: Optimizing Hash-Join 119

 250

 500

 1000

 2000

 256 1K 4K 16K 64K 256K 1M

T
im

e
(m

s)

Number of distinct keys

Pentium4

naive
1 partition
4 partitions

 500

 1000

 2000

 4000

 8000

 256 1K 4K 16K 64K 256K 1M

Number of distinct keys

Itanium2

16 partitions
64 partitions
256 partitions

Figure 5.13: Aggregation performance with varying number of partitions and
distinct keys (20M tuples)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

256 64K 256K 1M

T
im

e
(m

eg
ac

yc
le

s)

Number of distinct keys

Pentium4

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p. 0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

partitioning
hash-function computation
hash-table maintenance

 0

 2000

 4000

 6000

 8000

 10000

256 64K 256K 1M

Number of distinct keys

Itanium2

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p. 0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

0
p.

1
p.

4
p.

16
 p

.
64

 p
.

25
6

p.

partitioning
hash-function computation
hash-table maintenance

Figure 5.14: Execution profiling with varying number of partitions and distinct
keys (20M tuples)

120 Chapter 5: Vectorized execution model

Table 5.2: Best-Effort Partitioning parameters
Description Symbol Example

Query properties
Number of distinct values D 1 M
Number of tuples T 20 M
Input width î 4 B
Hash-table: data width ĥd 4 B
Hash-table: buckets width ĥb 8 B
Hash-table: per-key memory = ĥw 20 B
ĥd + 2 · ĥb (Cuckoo, 50% fill ratio)
Hash-table: size = D · ĥw |H| 20 MB

BEP settings
Available buffer memory |M | 30 MB
Number of partitions P 16
Partition: size = |M|

P
|Mp| 1.875 MB

Partition: tuples buffered = |Mp|
î

Tp 480 K

Partition: hash-table size = |H|
P

|Hp| 1.25 MB
Number of per-lookup random a 4
accesses (Cuckoo)

Hardware properties (Example = Itanium2)
Cache size |C| 3 MB
Cache line width Ĉ 128 B
Cache latency lC 14 cycles
Main-memory latency lM 201 cycles

We now discuss in detail one particular scenario of using BEP for partitioned
hash aggregation. This setting is later used in experiments on our Itanium2 ma-
chine. The relevant hardware and algorithm parameters are listed in Table 5.2,
which in its rightmost column also contains the specific hardware characteris-
tics of Itanium2. Note that Itanium2 has a large and fast L3 cache, which is the
optimization target (in case of Pentium4, it is best to optimize for L2).

Example Scenario. Assume we need to find 1M unique values in a 20M single-
attribute, 4-byte long tuples using 50MB of RAM on our Itanium2 machine with
a 3MB L3 cache with 128-byte cache-lines. A hash table with a load factor of 0.5
occupies 20MB using optimized single-column Cuckoo Hashing [ZHB06]: 16MB
for the bucket array and 4MB for the values. Using 16 partitions will divide

Section 5.4: Optimizing Hash-Join 121

 0

 500

 1000

 1500

 2000

 2500

16K 64K 256K 1M 4M 16M

T
im

e
(m

s)

Available Buffer Space (number of tuples)

Pentium4

4 partitions 16 partitions

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

16K 64K 256K 1M 4M 16M

Available Buffer Space (number of tuples)

Itanium2

64 partitions
256 partitions

Figure 5.15: Impact of available buffer space (20M tuples, 1M unique values)

it into 1.25MB (cache-resident) hash-tables. There will be 30MB of RAM left
for partitions, and assuming uniform tuple distribution (which is actually the
worst case scenario for our algorithm), the largest partition during overflow
occupies 1.875MB, holding 480K 4-byte tuples. Thus, when this partition is
processed, 480K keys are looked-up in a hash-table, using 4 random memory
accesses per-tuple, resulting in 1875K accesses. Since the hash table consists
of 10240 128-byte cache lines, each of them will be accessed 188 times. With
main-memory and (L3) cache latencies of 201 and 14 cycles, respectively, this
results in an average access cost of 15 cycles.

Experiments. Figure 5.13 compares in a micro-benchmark naive (non-partitio-
ned) and best-effort partitioning hash aggregation, in a "SELECT DISTINCT key
FROM table" query on a 20M 4-byte wide tuples table, with a varying number of
distinct keys. When this number is small, the hash table fits in the CPU cache,
hence the partitioning only slows down execution. When the number of keys
grows, the hash table exceeds the cache size, and best-effort partitioned exe-
cution quickly becomes fastest. Figure 5.14 shows a performance break-down
into partitioning cost, hash table maintenance (lookup and inserts) and hash
function computation. With more partitions, the data locality improves, mak-
ing the hash table maintenance faster. On the other hand, more partitions result
in a slower partitioning phase. Finally, we see that with partitioned execution
the cost of the hash-function is two times higher, as it is computed both in

122 Chapter 5: Vectorized execution model

partitioning and lookup phases. Depending on the cost of computing this func-
tion (especially when it is computed over multiple attributes), it can be more
beneficial to store it during partitioning and reuse it during lookup.
The performance of partitioned execution depends highly on the cache-reuse

ratio during one processing phase, which in turn depends on the amount of
buffer space. As Figure 5.15 shows, with an increasing number of buffered tuples,
performance improves since more tuples hit the same cache line. If the number
of partitions is big enough to make the hash table fit in the cache, adding more
partitions does not change performance given the same buffer space. Finally, we
see that the performance curve quickly flattens, showing that the performance
can be close to optimal with significantly lower memory consumption. In this
case, processing time with a buffer space of only 2M tuples is the same as with
20M tuples (which is equivalent to full partitioning). We see this reduced RAM
requirement as the main advantage of best-effort partitioning.

Cost Model. We now formulate a cost model to answer the question “what is
the amount of buffer memory that should be given to BEP to achieve (near)
optimal performance?”
The cost of the amortized average data access cost during hash-table lookup

depends on the cache-reuse factor:

access cost = lC +
lM

reuse factor

The cache-reuse factor is the expected amount of times a cache line is read while
looking up in the hash table all tuples from a partition. It can be computed
looking at the query, partitioning and hardware properties from Table 5.2:

reuse factor =
Tp · a · Ĉ
|Hp|

=
|M | · a · Ĉ
î ·D · ĥw

A good target for the cache-reuse factor is to aim for an amortized RAM latency
close to the cache performance, for example 25% higher:

lM
reuse factor

=
lC
4

This, in turn, allows us to compute the required amount of memory BEP needs:

|M | = lM · 4 · î ·D · ĥw
lC · a · Ĉ

Section 5.4: Optimizing Hash-Join 123

In the case of our Itanium2 experiments we arrive at:

|M | = 201 · 4 · 4 · 1M · 20
14 · 4 · 128

= 9,409,096 B = 2,352,274 tuples

and in case of Pentium 4:

|M | = 370 · 4 · 4 · 1M · 20
24 · 4 · 128

= 10,103,464 B = 2,525,866 tuples

This prediction is confirmed in Figure 5.15, where a buffer of 2M tuples results
in the optimal performance.
As a final observation, it is striking that the amount of partitions does not

play a role in the formula. The cost model does assume, though, that the hash
table fits in the CPU cache. This once again is confirmed in Figure 5.15, which
shows that once partitions are small enough for them to fit in the CPU cache,
performance does not change. Note that on Pentium4, the 16 partition line is in
the middle, because at that setting the hash-tables (20MB/16 = 1.25MB) are
just a bit too large to fit L2, but average latency has gone down with respect
to pure random access.

5.4.4 BEP discussion

Best-effort partitioning can be easily applied to various relational operations. In
aggregation, the ProcessPartition() function simply incrementally updates the
current aggregate results. In joins and set-operations, the regular partitioning
can first be used for the build relation, and then BEP can be applied for the
probe relation. This allows, for example, cache-friendly joining of two relations if
only one of them fits in main memory. This can be further extended to multi-way
joins using hash teams [GBC98].
The flexibility of BEP memory requirements is useful in a scenario where the

memory available for the operator changes during its execution. If the memory
manager provides BEP with extra memory, it can be simply utilized as addi-
tional buffer space. If, on the other hand, available memory is reduced, BEP
only needs to pass some of the partitions to the processing operator and free
the buffers they occupied.
The ideas behind BEP can be applied in a scenario with more storage levels,

e.g. in a setup with a fast flash drive and a slow magnetic disk. If the hash-
table does not fit in main memory, and the partitioned data is too large to
fit on a flash drive, BEP can be used to buffer the data on a flash device and
periodically process memory-size hash tables, possibly again using BEP to make

124 Chapter 5: Vectorized execution model

it cache-friendly. This scenario raises the question whether it is possible to build
a cache-oblivious data structure [FLPR99] with properties similar to those of
BEP.
BEP is related to a few other processing techniques besides vanilla data

partitioning. Early aggregation [Lar97] allows computing aggregated results for
part of the data and later join combine them. In parallel local-global aggrega-
tion [Gra93], tuples can be distributed using hash-partitioning among multiple
nodes. If the combined memory of these nodes is enough to keep the whole hash
table, I/O-based partitioning is not necessary. In hybrid hashing [DKO+84], the
effort is made to keep as much data in memory as possible, spilling only some
of the partitions to disk. While there are clearly similarities between BEP and
these techniques, BEP provides a unique combination of features: (i) it allows
efficient processing if the data does not fit in the first-level storage (cache), (ii)
it optimizes data partitioning for a limited second-level storage (main memory),
(iii) it allows a non-blocking partitioning phase, and, finally, (iv) it can be easily
combined with dynamic memory adjustments.

5.5 Extending the vectorized world

One of the concerns related to vectorized processing is that originally it has been
limited to pure numeric processing, ignoring many issues crucial to database
performance, but often neglected in research. In this section we discuss how
vectorized processing can be applied in some of these areas.

5.5.1 Overflow checking

Arithmetic overflows are rarely analyzed in the database literature, but they
are a necessity in a production-quality system. While CPUs do detect overflows,
many programming languages (e.g. C++) do not provide mechanisms to check
for them. As mentioned in Section 5.1.3, on some platforms, a special summary
overflow processor flag can be checked to detect an overflow over a large set
of computations. Still, mainstream Intel and AMD CPUs do not have such
capabilities, and software solutions need to be applied to this problem. One of
the approaches is to cast a given datatype into a larger one, and check if the
result of the arithmetic operation fits into the smaller datatype range. A simple
overflow-handling addition primitive for unsigned integers could then look like
this

Section 5.5: Extending the vectorized world 125

int map_add_int_vec_int_vec(uint *result, uint *input1, uint *input2, int n) {
for (int i = 0; i < n; i++) {
ulong l1 = input1[i];
ulong l2 = input2[i];
ulong res = l1 + l2;
if (res > 0xFFFFFFFFUL)
return STATUS_ERROR;

result[i] = (uint)res;
}
return STATUS_OK

}

Note again that the overflow check is performed for every tuple. An optimized
vectorized version could look like this:

int map_add_int_vec_int_vec(int *result, uint *input1, uint *input2, int n) {
ulong tmp = 0;
for (int i = 0; i < n; i++) {
ulong l1 = input1[i];
ulong l2 = input2[i];
ulong res = l1 + l2;
tmp |= res;
result[i] = (int)res;

}
if (tmp > 0xFFFFFFFFUL)
return STATUS_ERROR;

return STATUS_OK;
}

While the check in the first version can be perfectly predicted, it still causes
some overhead. As a result, removing it in the second version gives us a 25%
boost on our test Core2Duo machine.

5.5.2 NULL handling

NULL handling is another often ignored issue in performance-focused research.
There are different options for NULL representation in data, including a reserved
NULL value, a list of positions with (or without) NULL values and a bitmap with
a bit set for every NULL value. In this section we demonstrate an example where
vectorization improves the NULL handling with the bitmap representation.
Figure 5.16 demonstrates the performance of different possible implementa-

tions of a NULL-handling integer addition primitive. Both inputs use a data
representation with a “value” vector holding all the values (including unde-
fined values for NULLs), and a “bitmap” vector holding the NULL bitmap.
The first, “iterative” version, for every tuple checks if the proper bit in either
input bitmap is set. If so, it sets the bit in the destination NULL bitmap, and

126 Chapter 5: Vectorized execution model

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

C
P

U
 c

yc
le

s
/ t

up
le

Percentage of NULL values (in both inputs)

iterative
every-8
every-4

full-computation

Figure 5.16: NULL-handling addition using the standard approach, per-8-bit
and per-4-bit checks, and a full-computation approach (Core2Duo)

if not, performs the actual addition. The “every-8” and “every-4” versions per-
forms a trick mentioned in Section 5.1.5: they check 8 or 4 bits at once in
both inputs, and if either is non-zero, they perform the slow “iterative” code.
This can be beneficial with a very small number of NULL values. Finally, the
“full-computation” version exploits the fact that in many cases performing the
computation for the NULL values does not cause an error, as long as the re-
sult value is marked as NULL. First, it creates a destination bitmap by simply
binary-ORing the source bitmaps. Then, it performs the addition for all tuples.
Both loops can be very efficiently optimized by the compiler, resulting in a 3 to
8 times faster implementation. Clearly, this aggressive approach is not applica-
ble in every case – for example, dividing by a NULL tuple that has a zero in
the value vector can cause an error. Also, when the performed computation is
expensive, the extra performed operations can outweigh the benefit of removing
the comparison. Still, it is a nice example of the improvement possible with
vectorized processing.

5.5.3 String processing

An obvious application of vectorized processing for strings is in areas where
there exist some (possibly approximate) fixed-width string representations, for
example hash values or dictionary keys for strings from limited domains. In

Section 5.5: Extending the vectorized world 127

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

C
P

U
 c

yc
le

s
/ t

up
le

Selectivity (%)

inlined
strcmp

vectorized
inlined-opt4

vectorized-opt4

Figure 5.17: Performance of string-equality selection using strcmp(), inlined
comparison and vectorized version (Core 2 Duo)

such a case, for example in a string equality-search, vectorized processing can be
used to perform efficient filtering-out of the non-matching strings using integer
processing, possibly followed by the expensive full-string comparison for a subset
of tuples.
Even when working on real strings, it turns out there are cases when vec-

torization can help. Figure 5.17 presents an experiment in which we perform
string-equality search, using a 20-byte long key, and a collection in which half
of the non-matching strings share some prefix with the key. We use a standard
zero-terminated C string representation. We compare three types of implementa-
tions: one based on the standard strcmp() function, one in which the strcmp()
functionality is inlined, and a vectorized one. In the vectorized implementation,
instead of comparing the entire strings one after another, we first select out
strings with a matching first character, then from these we select strings with
a matching second character, and so on. Additionally, for the inlined and vec-
torized versions, we applied an additional optimization (“-opt4”), in which we
compare 4 bytes in one step as integers (except for the last few bytes of the pat-
tern). This technique is safe, as long as it is known that the 3 bytes after each
string are safe to be addressed by the user process, which can be guaranteed by
the memory allocation and buffer management facilities.
Figure 5.17 demonstrates that the standard strcmp() function is quite effi-

cient and can beat the inlined version. Still, it loses with the vectorized solution
for selectivities ranging from 0% to 25%. The main reason of this difference
comes from the fact that the vectorized version performs fewer but longer loops

128 Chapter 5: Vectorized execution model

over the data, reducing the loop management overhead. If the 4-byte compar-
ison trick is applied, the vectorized version becomes a clear winner, providing
as much as 2- and 4- times improvement over optimized inlined and default
strcmp() implementation, respectively.
While not conclusive, this simple experiment shows that vectorization can

be efficiently applied to some string processing problems. We believe that this
research area, while relatively unexplored, has a potential for more significant
improvements.

5.5.4 Binary search

Finding an element in an ordered sequence is a problem present in many data
processing tasks. In databases, it occurs e.g. when searching for an element
in a sorted dictionary, finding the next pointer during the B-tree traversal,
performing merge join and more. Typically, binary search is used to implement
this task. It is a very well researched problem, often being used as an example of
algorithm design and analysis [Ben99]. Let us define this problem as finding an
element key in an ordered array data of size N, returning the value p equal to a
position in data of a found element, or -1 if the element does not occur in the
array. We extend this problem to a vectorized case, when we need to perform
multiple binary searches for all values in a keys arrays of size M, and store the
positions in the result array. This “bulk” implementation based on the binary
search version from [Ben99] looks as follows:

// BINARY SEARCH - SIMPLE
for (i = 0; i < M; i++) {
key = keys[i];
l = -1;
u = N;
while (l + 1 != u) {
m = (l + u) / 2;
if (data[m] < key)
l = m;

else
u = m;

p = u;
}
result[i] = p;

}

One possible optimization of this SIMPLE algorithm, discussed in [Ben99],
exploits the fact that if the array size is a power of 2, the code can be simpler,
as division by two never results in rounding errors. We used this technique to

Section 5.5: Extending the vectorized world 129

 10

 100

 1000

 10000

 1 32 1K 32K 1M 32M

T
im

e
(m

ill
io

ns
 C

P
U

 c
yc

le
s)

Data range

SIMPLE
IMPROVED

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 1 32 1K 32K 1M 32M

Im
pr

ov
em

en
t o

ve
r

S
IM

P
LE

Data range

VECTORIZED
VECTORIZED-NO-IF
VECTORIZED-SIMD

Figure 5.18: Performance of different binary-search implementations (Core 2
Quad 2.4 GHz, 16KB L1 D-cache, 4MB L2 cache)

implement a solution for a simplified binary search problem, when the key is
guaranteed to be in the data:

// BINARY SEARCH - IMPROVED
powerOfTwo = pow(2, floor(log2(N - 1))); // biggest power of 2 smaller than N
splitIndex = N - powerOfTwo; // used to divide a problem into two problems
splitValue = data[splitIndex]; // with sizes guaranteed to be powers of 2
for (i = 0; i < M; i++) {
key = keys[i];
if (key >= splitValue)
p = splitIndex

else
p = 0;

for (j = powerOfTwo / 2; j >= 1; j = j / 2)
if (key >= data[p + j])
p = p + j;

result[i] = p;
}

Figure 5.18 presents results of an experiment, in which we perform a search
of 2M keys in a data array of unique values, guaranteed to include the keys.
The size of data increases from 3 to ca. 43 millions, with step 3. As Figure 5.18
shows, the IMPROVED version provides a significant boost, mostly related to its
simpler code. Still, this boost is only visible when data fits in the CPU cache -
once the lookups start to cause main memory accesses, the time gets dominated
by the cache misses.

130 Chapter 5: Vectorized execution model

Looking at the code in the IMPROVED version, we can observe that the iter-
ations in the inner loop are not independent. This is caused by the nature of
the binary tree traversal – to find the next node, the previous node needs to be
fully compared with. As a result, the code cannot fully exploit superscalar CPU
features and cache misses cannot be overlapped between iterations. To improve
this situation, we can exploit the fact that the inner loops are independent for
different searched keys (values of i). Also, the value that is added or not to the
current position p at a given level (j) is the same for different keys. This leads
to the following, VECTORIZED implementation of our problem:

// BINARY SEARCH - VECTORIZED
VSIZE=256; // vector size
// Perform computation vector by vector
for (processed = 0; processed < M; processed += VSIZE) {
int *result_vector = result + processed;
int *keys_vector = keys + processed;
// First, for each vector, perform the first phase of the search
for (i = 0; i < VSIZE; i++)
result_vector[i] = splitIndex * (keys_vector[i] >= splitValue);

// Then, for each search phase, perform it for all the elements in a vector
for (j = powerOfTwo / 2; j >= 1; j = j / 2) {
int *data_shifted = data + j;
for (i = 0; i < VSIZE; i++)
if (keys_vector[i] >= data_shifted[result_vector[i]])
result_vector[i] += j;

}

This version follows the idea of phase separation from Section 5.2.3.2. The
state of each element in a given phase is saved in result vector. As a result,
each iteration in the inner-most loop is fully independent. Also, some opti-
mizations become possible, e.g. introducing the data shifted variable, which
allows to remove the addition of p during each comparison. While this version
achieves a relatively poor performance, as seen in Figure 5.18, it is much more
resistant to the data not fitting in the CPU cache. This is because the cache
misses occurring in the lookup phase are independent, and can be overlapped
by the memory controller. This motivates further optimizations of this routine.
One problem found in this routine is the if statement in the inner-most loops.
This control dependency can be easily converted into data dependency with this
simple code:

// BINARY SEARCH - VECTORIZED-NO-IF
...

for (i = 0; i < VSIZE; i++)
result_vector[i] += (keys_vector[i] >= data_shifted[result_vector[i]]) * j;

...

Section 5.5: Extending the vectorized world 131

This version significantly improves the performance, by matching the IMPROVED
version for in-cache data ranges and being more resistant to cache misses for
larger data ranges.
The final optimization comes from the observation that since all the op-

erations for different keys are independent, SIMD instructions can be used to
further improve the performance. This SIMD-ized version of the binary search
is as follows (using Intel ICC SIMD intrinsics [Int07c]):

// BINARY SEARCH - VECTORIZED-SIMD
VSIZE=256; // vector size
for (processed = 0; processed < M; processed += VSIZE) {
int *result_vector = result + processed;
int *keys_vector = keys + processed;
__m128i xm_idxvec = _mm_set_epi32(splitIndex, splitIndex, splitIndex, splitIndex);
__m128i xm_valvec = _mm_set_epi32(splitValue, splitValue, splitValue, splitValue);
// Prepare the first index in the search
for (i = 0; i < VSIZE; i += 4) {
__m128i xm_vals = _mm_load_si128((__m128i*)(keys_vector + i));
xm_vals = _mm_andnot_si128(

_mm_cmplt_epi32(xm_vals, xm_valvec),
xm_idxvec);

_mm_store_si128((__m128i*)(result_vector + i), xm_vals);
}

// Then, for each search phase, perform it for all the elements in a vector
for (j = powerOfTwo / 2; j >= 1; j /= 2) {
int *data_shifted = data + j;
__m128i xm_jvec = _mm_set_epi32(j, j, j, j);
for (i = 0; i < VSIZE; i += 4) {
__m128i xm_idxvec = _mm_load_si128((__m128i*)(result_vector + i));
int cmpval0 = data_shifted[result_vector[i + 0]];
int cmpval1 = data_shifted[result_vector[i + 1]];
int cmpval2 = data_shifted[result_vector[i + 2]];
int cmpval3 = data_shifted[result_vector[i + 3]];
__m128i xm_cmpvalvec = _mm_set_epi32(cmpval3, cmpval2, cmpval1, cmpval0);
__m128i xm_valvec = _mm_load_si128((__m128i*)(keys_vector + i));
xm_idxvec = _mm_add_epi32(

xm_idxvec, _mm_andnot_si128(
_mm_cmplt_epi32(xm_valvec, xm_cmpvalvec),
xm_jvec));

_mm_store_si128((__m128i*)(result_vector + i), xm_idxvec);
}

}
}

This VECTORIZED-SIMD version, while more complicated, allows to significantly
reduce the computation costs by executing the same operations for multiple
keys (4 in this case). Note that this implementation cannot be fully SIMD-ized
due to ISA limitations. For example, Intel SSE instructions do not have single
“gather” memory access instructions, allowing filling in a single SIMD register
with data from multiple memory locations – this leads to explicit creation of

132 Chapter 5: Vectorized execution model

the xm cmpvalvec variable. Even with this non optimal implementation, Fig-
ure 5.18 shows that VECTORIZED-SIMD beats all other implementations by a
large margin, especially when the data is in the CPU cache. Keep in mind that
the non-vectorized versions cannot be SIMD-ized in a similar manner, since the
computations there are not independent.
This section demonstrates again that vectorized processing, when applied,

allows many optimization techniques impossible in classical approaches. We
demonstrated how phase-separation can be used to provide independent op-
erations, allowing better overlapping of cache misses. Then, by removing the
control dependency we improved the performance on superscalar CPUs. Finally,
the introduction of SIMD instructions allowed to amortize the computation cost
among multiple elements. This gave a 2-3 times improvement over an optimized
non-vectorized version, both for in-cache and in-memory data.

5.6 Conclusions

This chapter demonstrates that the vectorized execution model, proposed in
Chapter 4 has numerous advantages over both the traditionally applied tuple-
at-a-time model and the column-at-a-time model of MonetDB. However, the
new approach results in new challenges, especially in the area of expressing
relational operators in a vectorized way. Implementation techniques proposed
in this chapter can make this process easier, allowing generic implementations
of different data processing tasks that are often approaching the performance of
hard-coded solutions. This high performance is achieved not only by removing
the interpretation overheads found in an iterative approach, but also thanks to
the ability to exploit various features of modern CPUs: superscalar processing,
SIMD instructions and cache memories.

Chapter 6

Light-weight data
compression

The previous chapter demonstrated how the vectorized execution model can be
used to achieve high performance for main-memory processing tasks. As dis-
cussed in Section 4.3, scaling this performance to disk-resident datasets poses a
challenge. The main reason is the imbalance between the continuously increasing
CPU power and the relatively stagnated disk performance. Even with a scan-
based processing approach, presented in Section 4.3.1, the bandwidth of a decent
RAID system cannot cope with the high performance of the MonetDB/X100
execution layer.
To obtain high query performance, even with modest disk configurations, we

propose new forms of lightweight data compression that reduce the I/O band-
width need of database and information retrieval systems. Our work differs from
previous use of compression in databases and information retrieval in the fol-
lowing aspects:

Super-scalar Algorithms. We contribute three new compression schemes
(PDICT, PFOR and PFOR-DELTA) that are specifically designed for the super-
scalar capabilities of modern CPUs. In particular, these algorithms lack any if-
then-else constructs in the performance-critical parts of their compression and
decompression routines. Also, the absence of dependencies between values be-
ing (de)compressed makes them fully loop-pipelinable by modern compilers and
allows for out-of-order execution on modern CPUs that achieve high instruc-
tions per cycle (IPC) efficiency. As a result, PFOR, PFOR-DELTA and PDICT

133

134 Chapter 6: Light-weight data compression

Buffer Manager

Decompressed

Compressed
Page

Cache

CPU
Query

Operator

Cache

Page
Buffer Manager
ColumnBM

MonetDB/X100
Execution Engine

Main memory Main memory

CPU

Pipeline

select

scan

project

select

scan

project

Disk Disk Disk Disk

Decompress Decompress

3

DMA read DMA read

1 2 1

Figure 6.1: I/O-RAM vs RAM-CPU compression

spend as little as 1-2 CPU cycles per 1 byte of source data, and a fraction of
that during decompression. This makes them even 10 times faster than previous
speed-tuned compression algorithms and allows them to improve I/O bandwidth
even on RAID systems that read and write data at rates of hundreds of MB/s.

Improved Compression Ratios. PDICT and PFOR are generalizations of re-
spectively dictionary and Frame-Of-Reference (FOR) or prefix-suppression (PS)
compression that were proposed previously [NCR02, GRS98, WKHM00]. In con-
trast to these schemes, our new compression methods can gracefully handle data
distributions with outliers, allowing for a better compression ratio on such data.
We believe this makes our algorithms also applicable to information retrieval.
In particular, we show that PFOR-DELTA compression ratios on the TREC
dataset approach that of a recently proposed high-speed compression method
tuned for inverted files [AM05] (“carryover-12”), while retaining a 7-fold com-
pression and decompression speed advantage.

RAM-CPU Cache Compression. We make a case for compression/decom-
pression to be used on the boundary between the CPU cache and RAM storage
levels. This implies that we also propose to cache pages in the buffer manager
(i.e. in RAM) in compressed form. Tuple values are decompressed at a small
granularity (such that they fit the CPU cache) just-in-time, when the query
processor needs them.
Previous systems [Syb] use compression between the RAM and I/O storage

Section 6.1: Related work 135

levels, such that the buffer manager caches decompressed disk pages. Not only
does this mean that the buffer manager can cache less data (causing more I/O),
but it also leads the CPU to move data three times in and out of the CPU cache
during query processing. This is illustrated by the left-most side of Figure 6.1:
first the buffer manager needs to bring each recently read disk block from RAM
to the CPU for decompression, then it moves it back in uncompressed form to
a buffer page in RAM, only to move the data a third time back into the CPU
cache, when it is actually needed by the query. As buffer manager pages are
compressed, a crucial feature of all our new compression schemes is fine-grained
decompression, which avoids full page decompression when only a single value
is accessed.
We implemented PDICT, PFOR and PFOR-DELTA as an integral part of

ColumnBM. Our experiments show that on the 100GB TPC-H benchmark, our
compression methods can improve performance by a factor equal to the com-
pression ratio in I/O constrained systems, and eliminate I/O as the dominant
cost factor in most cases. We tested our compression methods both using DSM
column-wise table storage [CK85] as well as a PAX layout, where data within a
single disk page is stored in a vertically decomposed fashion [ADHS01]. While
the TPC-H scenario favors the column-wise approach, PAX storage also strongly
benefits from our compression, extending its use to scenarios where the query
mix contains more OLTP-like queries.
The outline of this chapter is as follows. In Section 6.1 we relate our algo-

rithms to previous work on database compression. Section 6.2 then introduces
our new PFOR, PFOR-DELTA and PDICT compression algorithms. We use
CPU performance counters on three different hardware architectures to show
in detail how and why these algorithms achieve multi GB/s (de)compression
speeds. We evaluate the effectiveness of our techniques using MonetDB/X100
on TPC-H in Section 6.3, as well as on information retrieval datasets from
TREC and INEX in Section 6.4. Section 6.5 concludes this chapter and out-
lines future work.

6.1 Related work

Previous work on compression in database systems coincides with our goal to
save I/O, which requires lightweight methods (compared with compression that
minimizes storage size), such that decompression bandwidth clearly outruns I/O
bandwidth, and CPU-bound queries do not suffer too great a setback by addi-
tional decompression cost. In the following, we describe a number of previously

136 Chapter 6: Light-weight data compression

proposed database compression schemes [WKHM00, GS91, GRS98]:
Prefix Suppression (PS) compresses by eliminating common prefixes in data

values. This is often done in the special case of zero prefixes for numeric data
types. Thus, PS can be used for numeric data if actual values tend to be signif-
icantly smaller than the largest value of the type domain (e.g. prices that are
stored in large decimals).
Frame Of Reference (FOR), keeps for each disk block the minimum minC

value for the numeric column C, and then stores all column values c[i] as c[i]−
minC in an integer of only dlog2(maxC −minC + 1)e bits. FOR is efficient for
storing clustered data (e.g. dates in a data warehouse) as well as for compressing
node pointers in B-tree indices. FOR resembles PS if minC = 0, though the
difference is that PS is a variable-bitwidth encoding, while FOR encodes all
values in a page with the same amount of bits.
Dictionary Compression, also called “enumerated storage” [Bon02], exploits

value distributions that only use a subset of the full domain, and replaces each
occurring value by an integer code chosen from a dense range. For example, if
gender information is stored in a VARCHAR and only takes two values, the column
can be stored with 1-bit integers (0="MALE", 1="FEMALE"). A disadvantage of this
method is that new value inserts may enlarge the subset of used values to the
point that an extra bit is required for the integer codes, triggering recompression
of all previously stored values.
Several commercial database systems use data compression; especially node

pointer prefix compression in B-trees is quite prevalent (e.g. in DB2). Tera-
data’s Multi-Valued Compression [NCR02] uses dictionary compression for en-
tire columns, where the DBA has the task of providing the dictionary. Values
not in the dictionary are encoded with a reserved exception value, and are stored
elsewhere in the tuple. Oracle also uses dictionary compression, but on the gran-
ularity of the disk block [PP03]. By using a separate dictionary for each disk
block, the overflow-on-insert problem is easy to handle (at the price of additional
storage size).
The use of compressed column-wise relations in our approach strongly resem-

bles the Sybase IQ product [Syb]. Sybase IQ stores each column in a separate set
of pages, and each of these pages may be compressed using a variety of schemes,
including dictionary compression, prefix suppression and LZRW1 [Wil91]. LZRW1
is a fast version of common LZW [Wel84] Lempel-Ziv compression, which uses
a hash table without collision list to make value lookup during compression and
decompression simpler (typically achieving a reduced compression ratio when
compared to LZW). While faster than the common Lempel-Ziv compression
utilities (e.g. gzip), we show in Section 6.2 that LZRW1 is still an order of

Section 6.1: Related work 137

magnitude slower than our new compression schemes. Another major difference
with our approach is that the buffer manager of Sybase IQ caches decompressed
pages. This is unavoidable for compression algorithms like LZRW1 that do not
allow for fine-grained decompression of values. Page-wise decompression fully
hides compression on disk from the query execution engine, at the expense of
additional traffic between RAM and CPU cache (as depicted in Figure 6.1).

An interesting research direction is to adaptively determine the data com-
pression strategy during query optimization [CGK01, GS91, WKHM00]. An
example execution strategy that optimizes query processing by exploiting com-
pression may arise in queries that select on a dictionary-compressed column.
Here, decompression may be skipped if the query performs the selection directly
on the integer code (e.g. on gender=1 instead of gender="FEMALE"), which both
needs less I/O and uses a less CPU-intensive predicate. Another opportunity for
optimization arises when (arithmetic) operations are executed on a dictionary
compressed column. In that case, it is sometimes possible to execute the opera-
tion only on the dictionary, and leave the column values unchanged [Syb] (called
“enumeration views” in [Bon02]). Optimization strategies for compressed data
are described in [CGK01], where the authors assume page-level decompression,
but discuss the possibility to keep the compressed representation of the column
values in a page in case a query just copies an input column unchanged into a
result table (unnecessary decompression and subsequent compression can then
be avoided).

Finally, compression to reduce the volume of transferred and memory-resident
data has received significant attention in the information retrieval community,
in particular for compressing inverted lists [WMB99]. Inverted lists contain all
positions where a term occurs in a document (collection), always yielding a
monotonically increasing integer sequence. It is therefore effective to compress
the gaps rather than the term positions (Delta Compression). Such compression
is the prime reason why inverted lists are now commonly considered superior
to signature files as an IR access structure [WMB99]. Early inverted list com-
pression work focused on exploiting the specific characteristics of gap distri-
butions to achieve optimal compression ratio (e.g. using Huffman or Golomb
coding tuned to the frequency of each particular term with a local Bernoulli
model [Huf52]). More recently, attention has been paid to schemes that trade
compression ratio for higher decompression speed [Tro03]. In Section 6.4, we
show that our new PFOR compression scheme compares quite favorably with
a recent proposal in this direction, the word-aligned compression scheme called
“carryover-12” [AM05].

138 Chapter 6: Light-weight data compression

 0

 5

 10

 15

 20

 25

comp.
ratio

comp.
speed

decomp.
speed

comp.
ratio

comp.
speed

decomp.
speed

comp.
ratio

comp.
speed

decomp.
speed

comp.
ratio

comp.
speed

decomp.
speed

 0

 500

 1000

 1500

 2000

C
om

pr
es

si
on

 r
at

io

B
an

dw
id

th
 (

M
B

/s
)

L_ORDERKEY L_LINENUMBER L_COMMITDATE L_EXTENDEDPRICE

42.8 3024
zlib

bzip2
lzrw1
lzop

PFOR

Figure 6.2: Comparison of various compression algorithms on a subset of TPC-H
columns

6.2 Super-scalar compression

In this section we describe how insight in extracting high IPC (Instructions Per
Cycle) efficiency from super-scalar CPUs led us to the design of PFOR, PFOR-
DELTA and PDICT. Figure 6.2 shows that state-of-the-art “fast” algorithms
such as LZRW1 or LZOP usually obtain 200-500MB/s decompression through-
put on our evaluation platform (a 2.0GHz Opteron processor). However, we aim
for 2-6GB/s.
Let us first motivate the need for such speed with the following simple model

(all bandwidths in GB/s):
B = I/O bandwidth
r = compression ratio
Q = query bandwidth
C = decompression bandwidth
R = result tuple bandwidth

Our goal with compression is to make queries that are I/O bound (i.e. Q > B)
faster:

R =

{
Br : Br

C +
Br
Q ¬ 1 (I/O bound)

QC
Q+C : Br

C +
Br
Q ­ 1 (CPU bound)

(6.1)

Many datasets in e.g. data warehouses and information retrieval systems
can be compressed considerably [GS91, GRS98]. Section 6.3 shows that even
the synthetic TPC-H dataset, with its uniform distributions, allows for good
compression ratios. With these ratios, we often have B < Q < Br, such that

Section 6.2: Super-scalar compression 139

the query becomes CPU bound using compression. Also, modern high-end RAID
controllers deliver B > 0.6GB/s [App06], so with r = 4 one needs C = 2.4GB/s
just to keep up with that. As we desire to spend only a minority of CPU time
on decompression, we need C = 4.8GB/s to keep overhead to 50% of CPU time,
and C = 12GB/s to get it down to 20%. Since disk bandwidth is typically shared
among multiple CPU cores, these numbers motivate our goal of C = 2−6GB/s.
We must point out that achieving such high decompression bandwidth is

hard. If we assume the decoded values to be 64-bit integers, e.g. C = 3GB/s
means that 400M integers must be decoded per second, such that we can spend
at most five cycles per tuple on our 2.0GHz machine! This motivates our interest
in getting high IPC out of modern CPUs.

6.2.1 Design guidelines

Our approach to super-scalar data (de)compression is similar to that of our
CPU-efficient arithmetic primitives of MonetDB/X100, namely to create vec-
torized compression and decompression algorithms that follow these guidelines:

1. (small) arrays of values should be compressed/decompressed in a tight
loop.

2. if-then-else inside the loop should be avoided;

3. the loop iterations should be kept independent.

The computational complexity of generic compression algorithms (e.g. LZW)
makes it very challenging to adhere to these guidelines, while the new algorithms
we propose are specifically designed to meet this challenge.
An additional guideline for our compression strategies is to allow them to

work efficiently with the update mechanisms of MonetDB/X100, described in
Section 4.3.4. In this architecture, the modifications are stored in in-memory
delta structures, similar to differential files [SL76]. The tables on disk are treated
as “immutable” objects that are only updated in a batched manner. During the
scan, data from disk and delta structures are merged, providing the execution
layer with a consistent state. As depicted in Figure 6.1, ColumnBM stores disk
pages in a compressed form and decompresses them just before execution on
a per-vector granularity. Thus (de)compression is performed on the boundary
between CPU cache and main memory, rather than between main memory and
disk, saving both cache misses and allowing more data to be cached in RAM.
This approach nicely fits the delta-based update mechanism, as merging the

140 Chapter 6: Light-weight data compression

deltas can be applied after decompression, and blocks (see 6.2.3) need to be
re-compressed only periodically.

6.2.2 PFOR, PFOR-DELTA and PDICT

All our compression methods classify input values as either coded or exception
values. Coded values are represented as small integers of arbitrary bit-width b,
with 1 ¬ b ¬ 24. The bit-width used for code values is kept constant within a
disk block. Exception values are stored in uncompressed form, thus they should
be infrequent in order to achieve a good compression ratio.
Our compression schemes are defined as follows:

PFOR Patched Frame-of-Reference: the small integers are positive offsets from
a base value. One (possibly negative) base value is used per disk block.
Unlike standard FOR, the base value is not necessarily the minimum value
in the block, as values below the base can be stored as exceptions.

PFOR-DELTA PFOR on value deltas: it encodes the differences between sub-
sequent values in the column. Decompression consists of first applying
PFOR and then computing the running sum on the result.

PDICT Patched Dictionary Compression. Integer codes refer to a position in
an array of values (the dictionary). Not all values need to be in the dictio-
nary; there can be exceptions. A disk block can contain a new dictionary
but can also re-use the dictionary of a previous block.

The microbenchmarks presented throughout this section all compress 64-
bit data items into 8 bits codes, but we implemented and tested our algo-
rithms for all (applicable) datatypes and bit-widths b. In general, we found that,
(de)compression bandwidth varies proportionally with the compression ratio.
Datasets encountered in practice are often skewed, both in terms of value dis-

tribution and frequency distribution. However, the existing FOR and dictionary
compression cannot cope well with this. FOR compression needs dlog2(max −
min + 1)e bits, and is thus vulnerable to outliers if the data (i.e. value) distri-
bution is skewed. In contrast, our new PFOR stores outliers as exceptions, such
that the [maxcoded,mincoded] range is strongly reduced. Similarly, dictionary
compression always needs dlog2(|D|)e bits, even if the frequency distribution of
the domain D is highly skewed. In PDICT, however, infrequent values become
exceptions, such that the size |Dcoded| of the frequent domain is strongly reduced
on skewed frequency distributions.

Section 6.2: Super-scalar compression 141

6.2.3 Disk storage

As discussed in Section 4.3, ColumnBM stores data in blocks, grouped in large
chunks. Blocks contain one or more segments. In case of column-wise storage,
a segment is identical to a block. In case of PAX [ADHS01], a block contains a
segment for each column, and all segments in the block contain the same number
of values, which implies that these segments may have different byte-sizes (that
sum to a number close to the block size).
Uncompressed fixed-width data types are stored in a segment as a simple

array of values.1 Figure 6.3 shows the structure of a compressed segment that
divides the segment in four sections:

• a fixed-size header that contains compression-method specific info as well
as the sizes and positions of the other sections.

• the entry point section that allows for fine-grained tuple access. For every
128 values, it contains an offset to the next exception in the code section,
and a corresponding offset in the exception section.

• the code section is a forward-growing array with one small integer code
for each encoded value. This section takes the majority of the space in the
block.

• the exception section, growing backwards, stores non-compressed values
that could not be encoded into a small integer code.

6.2.4 Decompression

A pre-processing step in decompression is bit-unpacking: the transformation of
b bits-wide code patterns in the disk block into an array of machine-addressable
integers. Symmetrically, we use bit-packing as post-processing for compression.
These phases take only a moderate fraction of our algorithms cost, thanks to
using highly optimized routines that are loop-unrolled to handle 32 values each
iteration:

/* example: routine to unpack 12-bits codes into integers */
void UNPACK12(unsigned int* out, unsigned int *in, int n) {
for(int i = 0, j = 0; i < n; i += 8, j += 3) {
out[i + 0] = ((in[j + 0] & 0x00000fff) >> 0);
out[i + 1] = ((in[j + 0] & 0x00fff000) >> 12);

1Variable-width data types such as strings are stored in two segments: one byte-array that
contains all values concatenated and a segment with integer offsets to their start positions.

142 Chapter 6: Light-weight data compression

header

code section

exception section

entry points

0

3 1

4 1 5 2 6 5 3 5

7 3 2

989

5

1 3

98

Figure 6.3: Compressed Segment Layout (encoding the digits of π:
31415926535897932 using 3-bit PFOR compression)

out[i + 2] = ((in[j + 0] & 0xff000000) >> 24) | (in[j + 1] & 0x0000000f);
out[i + 3] = ((in[j + 1] & 0x0000fff0) >> 4);
out[i + 4] = ((in[j + 1] & 0x0fff0000) >> 16);
out[i + 5] = ((in[j + 1] & 0xf0000000) >> 28) | (in[j + 2] & 0x000000ff);
out[i + 6] = ((in[j + 2] & 0x000fff00) >> 8);
out[i + 7] = ((in[j + 2] & 0xfff00000) >> 20);

}
}

The naive way to implement any decompression scheme that distinguishes
between coded and exception values, is to use a special code (MAXCODE) for ex-
ceptions, and continuously test for it while decompressing:

/* NAIVE approach to decompression */
for (i = j = 0; i < n; i++)
if (code[i] < MAXCODE)
output[i] = DECODE(code[i]);

else
output[i] = exception[--j]);

The above decompression kernel is applicable to both PFOR and PDICT,
though the way they encode/decode values differs. In our pseudo code, we ab-
stract from these differences using the following macros: (i) int ENCODE(ANY),
which transforms an input value into a small integer, and (ii) ANY DECODE(int),
which produces the encoded input value given a small integer code.
The problem with the NAIVE approach is that it violates our guideline to

avoid if-then-else in the inner loop. This hinders loop pipelining by the com-
piler, and also causes branch mispredictions when the else-branch is taken (as-
suming exceptions are the less likely event). The bottom-left part of Figure 6.4

Section 6.2: Super-scalar compression 143

 0

2

4

IP
C

Xeon 3GHz Opteron 2GHz

 0

 2

 4

IP
C

Itanium 1.3GHz

 0

 10

 20

B
ra

nc
h

m
is

s
ra

te
 (

%
)

 0

 10

 20

B
ra

nc
h

m
is

s
ra

te
 (

%
)

 0
 1
 2
 3
 4
 5

 0 0.5 1

B
an

dw
id

th
(G

B
/s

)

Exception rate

NAIVE

 0 0.5 1

Exception rate

PFOR

 0 0.5 1
0
1
2
3
4
5

B
an

dw
id

th
(G

B
/s

)

Exception rate

PDICT

Figure 6.4: Decompression bandwidth, branch miss rate and instructions-per-
cycle depending on the exception rate

demonstrates most clearly on Pentium4 how NAIVE decompression through-
put rapidly deteriorates as the exception rate gets nearer to 50%. The cause are
branch mispredictions2 on the if-then-else test for an exception, that becomes
impossible to predict. In the graph on top, we see that the IPC takes a nosedive
to 0.5 at that point, showing that branch mispredictions are severely penalized
by the 31 stage pipeline of Pentium4.
To avoid this problem, we propose the following alternative “patch” ap-

proach:

int Decompress<ANY>(int n, int bitwidth,
ANY *__restrict__ output,
void *__restrict__ input,
ANY *__restrict__ exception,
int *next_exception)

{
int next, code[n], cur = *next_exception;

UNPACK[bitwidth](code, input, n); /* bit-unpack the values */

/* LOOP1: decode regardless of exceptions */

2We collected IPC, cache misses, and branch misprediction statistics using CPU event
counters on all test platforms.

144 Chapter 6: Light-weight data compression

for (int i = 0; i < n; i++) {
output[i] = DECODE(code[i]);

}

/* LOOP2: patch it up */
for (int i = 1; cur < n; i++, cur = next) {
next = cur + code[cur] + 1;
output[cur] = exception[-i];

}

*next_exception = cur - n;
return i;

}

Different from the NAIVE method, decompression is now split in two tight
loops without any if-then-else statements, which both can be efficiently opti-
mized by a compiler and executed on superscalar CPUs.
Figure 6.3, depicting the integer sequence of π stored using 3-bit PFOR with

mincoded = 0, shows that all exception values (i.e. digits ­ 8) use their code
value to store an offset to the next exception, forming a linked list.
The first loop simply decodes all values, which will generate wrong values for

the exceptions. The second loop then patches up the incorrect values by walking
the linked exception list and copying the exception values into the output array.
The idea of patching rather than escaping exception values is central to our new
algorithms, hence the “P” in their name derives from it.
Following the linked list during patching violates our guideline that one

iteration should be independent of the previous one. Iterating the list poses a
data hazard to the CPU, however, and not a control hazard, such that it is not
very expensive. Moreover, the second loop processes only a small percentage of
values, and the data it updates is in the CPU cache. This makes its overhead
easily amortized by the performance improvement of the first loop.
The results in Figure 6.4 show that the performance of our patching al-

gorithms decreases monotonically with increasing exception rates. Contrary to
the NAIVE approach, decompression bandwidth degrades roughly proportion-
ally with the compression ratio, or the size of the compressed data, as one would
expect. The relatively flat IPC lines suggest that the overhead of the data de-
pendency in LOOP2 is negligible with respect to the increase in memory traffic.
This does not hold for the NAIVE kernel, for which on Pentium4 and

Opteron we observe a clear increase in decompression bandwidth towards an
exception rate of one. This suggests that its performance is not determined by
the size of the compressed data, but by branch mispredictions in the CPU, as
both decompression bandwidth and IPC follow the inverse of the bell-shaped
branch misprediction curve.

Section 6.2: Super-scalar compression 145

 0

 2

 4

 6

IP
C

Xeon 3GHz Opteron 2GHz

 0

 2

 4

 6

IP
C

Itanium 1.3GHz

 0

 1

 2

 3

 0 0.5 1

B
an

dw
id

th
 (

G
B

/s
)

Exception rate

NAIVE

 0 0.5 1

Exception rate

PRED

 0 0.5 1
 0

 1

 2

 3

B
an

dw
id

th
 (

G
B

/s
)

Exception rate

DC

Figure 6.5: PFOR compression bandwidth as a function of exception rate, using
an if-then-else (NAIVE), predication (PRED) and double-cursor predication
(DC)

On Itanium2, the branch mispredictions are avoided thanks to branch pred-
ication explained in Section 2.1.5.2. As a result, the performance of the NAIVE
kernel closely tracks that of PFOR and PDICT, as presented in the rightmost
graph in Figure 6.4. Overall, the patching schemes are clearly to be preferred
over the NAIVE approach, as they are faster on all tested architectures.

6.2.5 Compression

Previous database compression work mainly focuses on decompression perfor-
mance, and views compression as a one-time investment that is amortized by
repeated use of the compressed data. This is caused by the low throughput
of compression, often an order of magnitude slower than decompression (see
Figure 6.2), such that compression bandwidth is clearly lower than I/O write

146 Chapter 6: Light-weight data compression

bandwidth. In contrast, our super-scalar compression can be used to accelerate
I/O bound data materialization tasks. In OLAP and data mining environments,
such materialization happens quite frequently for sorting, ad-hoc joins that re-
quire partitioning, or (view) materialization of intermediate results that are
re-used by a subsequent query batch. Efficient compression is also important
for re-compression of data chunks occurring in case of updates. Note that I/O
write bandwidth tends to be considerably lower than read bandwidth, espe-
cially on RAID devices with mirroring. Therefore, the design goal of compres-
sion throughput can be lower than for decompression, e.g. 1-2GB/s. The bottom
graphs in Figure 6.5 show that PFOR compression meets this target on all our
test platforms.
To achieve such high throughput, we again use the principle of avoiding

if-then-else in the inner loop. The first loop uses a temporary array miss to
make a list of exception positions. The second loop constructs the linked patch
list and copies the exception values.

int Compress<ANY>(int n, int bitwidth,
ANY *__restrict__ input,
void *__restrict__ code,
ANY *__restrict__ exception,
int *lastpatch)

{
int miss[N], data[N], prev = *lastpatch;

/* LOOP1: find exceptions */
for (int i = 0, j = 0; i < n; i++) {
int val = ENCODE(input[i]);
data[i] = val;
miss[j] = i;
j += (val > MAXCODE);

}

/* LOOP2: create patchlist */
for (int i = 0; i < j; i++) {
int cur = miss[i];
exception[-1 - i] = input[cur];
data[prev] = (cur - prev) - 1;
prev = cur;

}

PACK[bitwidth](code, data, n); /* bit-pack the values */
*lastpatch = prev;
return j; /* #exceptions */

}

Appending a position to the miss list without if-then-else uses a technique
similar to the one used in [Ros02] for selection computation: the current position
is always copied to the end of the list, and the list pointer is incremented with

Section 6.2: Super-scalar compression 147

a Boolean value. This technique transforms a control dependency into a data
dependency, which is more efficient. Still, the presence of a data dependency
on the variable j in the first, performance-critical loop, violates our guideline
that iterations should be independent. Data dependencies cause delay slots in
the CPU pipeline. The left-upper graph of Figure 6.5 shows that Pentium4 has
an IPC of < 1. We can try to improve IPC by offering it more independent
work using a technique called double-cursor. It runs two cursors through the to-
be-encoded values, one from the start, and one from halfway. Two independent
miss lists are used to detect exceptions, processed one after the other in the
sequel (omitted):

/* LOOP1a: find exceptions */
int m = n / 2;
for(int i = 0, j_0 = 0, j_m = 0; i < m; i++) {
int val_0 = ENCODE(input[i + 0]);
int val_m = ENCODE(input[i + m]);
code[i + 0] = val_0;
code[i + m] = val_m;
miss_0[j_0] = i + 0;
miss_m[j_m] = i + m;
j_0 += (val_0 > MAXCODE);
j_m += (val_m > MAXCODE);

}

Double-cursor is not the same as loop-unrolling, and cannot be introduced
automatically by the compiler.
Figure 6.5 shows that double-cursor significantly improves the IPC and

throughput of PFOR on Pentium4, while it behaves the same as single-cursor
PFOR on Opteron. On Itanium, where single-cursor already achieved a very high
IPC (4), performance degrades somewhat. As the gains on Pentium4, which is
also the more prevalent, outweigh the loses on Itanium, double-cursor can be
considered the overall winner.

6.2.6 Fine-grained access

While we anticipate that most performance-intensive queries will decompress all
values in a compressed segment sequentially, some queries may perform random
value accesses. A random lookup in the buffer manager will likely cause a CPU
cache miss, so if decompression overhead stays in the same ballpark as DRAM
access (i.e. 150-400 CPU cycles per cache miss), we deem it efficient enough.
It is easy to randomly access the code section at any position x, but we

should also know whether position x is an exception and if so, where in the
exception section the real value is stored. For this purpose, the entry point

148 Chapter 6: Light-weight data compression

section keeps a pointer to the next exception, as well as its position in the
exception section, for each position that is an exact multiple of 128. Each entry
point, stored once every 128 values, is a combination of a 7-bits patch start list
and a 25-bits start exception, hence the storage overhead of fine-grained access
is 32/128 = 0.25 bits per value. Note that 25-bits exception codes limit our
segments to a maximum of 32MB, which is more than sufficient for now to
obtain high sequential bandwidth on any RAID system. We can obtain the
value at position x in the block, as follows:

ANY finegrained_decompress(int position,
int*__restrict__ code,
ANY*__restrict__ exception,
entry_t*__restrict__ entry)

{
int i = entry[position >> 7].start_list + position & ~127;
int j = entry[position >> 7].start_exception;
while(i < x) {
i += code[i];
j--;

}
return (i == x) ? exception[j] : DECODE(code[x]);

}

This tight pipelinable loop that walks the linked list takes 8, 9 and 11 cycles
per iteration on respectively the Opteron, Itanium2 and Pentium4 CPUs. Even
in the worst realistic case of 30% exceptions, it thus takes on average only a
limited (128 ∗ 0.3/2 = 19) number of iterations on average, such that random
access decoding takes around 200 CPU work cycles per value.
In case of PFOR-DELTA, we must also store the current running total for

each entry point. Sticking with 64-bit integers, this induces an additional storage
overhead of 0.75 bit per value. Also, fine-grained PFOR-DELTA access requires
decompressing a vector of 128 values (which usually causes one cache miss in
both the code and exception sections, bringing memory access cost to 300-800
cycles). Since our decompression algorithms typically spend between 3-6 cycles
per value, uncompressing 128 values is in the same order of cost.

6.2.7 Compulsory exceptions

A complication of patching is that the compressed integer codes only have a
range from [0,2b-1]; hence the maximum distance between elements in the linked
list of exceptions is 2b. If gaps exceeding this distance occur, so-called compulsory
exceptions must be introduced. A compulsory exception is a value that can be

Section 6.2: Super-scalar compression 149

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
’ (

re
al

 e
xc

ep
tio

n
ra

te
)

E (data exception rate)

b=1

b=2

b=3
b=4

b>4 (E’ = E)

Figure 6.6: Impact of the compulsory exceptions on the real exception rate E′

for b ¬ 4

compressed but is represented as an exception anyway, just in order to use its
code value to keep the exception list connected.
We do not always have to insert compulsory exceptions if the gap is larger

than 2b though. Each entry point starts a new exception list, and these lists
need not be connected to each other. Thus, gaps between exceptions at the
start and end of each 128-value sequence never need compulsory exceptions.
This effectively reduces the area in the code section that must be “covered”
by a linked exception list per 128 values by 1/E, where E is the exception
rate caused by the data distribution. From this, we can compute E′, which is
the effective exception rate after taking into account compulsory exceptions as
E′ =MAX(E, 128E−1128E 2

−b). Figure 6.6 shows that with bit-width b = 1 for miss
rates E > 0.01, the effective exception rate E′ quickly increases to a rather
useless 0.47. With b = 2, it goes to an already more usable E′ = 0.22, while for
all bit-widths b > 4, the effect of compulsory exceptions is negligible.

6.2.8 RAM-RAM vs. RAM-cache decompression

Figure 6.7 presents the results of a micro-benchmark conducted to evaluate our
choice for fine-grained, into-cache decompression, as opposed to decompression
on the granularity of disk pages. Into-cache decompression is achieved by de-
compressing a page on a per-vector basis, always storing the result in the same
cache-resident result vector, overwriting any previous results. In the page-wise
approach, the full, uncompressed page is materialized in RAM.
Results show that RAM-cache decompression is much more efficient than

RAM-RAM decompression. Performance of the former approach degrades with
the exception rate, and thus the size of the compressed data. The flat shape

150 Chapter 6: Light-weight data compression

 1

 2

 3

 4

 5

 0 0.5 1

B
an

dw
id

th
 (

G
B

/s
)

Exception rate

Xeon 3 GHz

 0 0.5 1

Exception rate

Opteron 2GHz

 0 0.5 1
 0

 1

 2

 3

 4

 5

B
an

dw
id

th
 (

G
B

/s
)

Exception rate

Itanium 1.3 GHz

Figure 6.7: RAM-RAM (thin) versus RAM-cache PFOR decompression (thick)

of the latter approach suggests that performance is constrained by the need to
materialize the uncompressed result, which is always constant in size.
Another benefit of the RAM-cache approach is that the cache-resident result

vector can be fed directly into an operator pipeline. In the RAM-RAM approach,
the uncompressed page needs to be read back into the CPU, presenting an
additional overhead which is not even incorporated in the RAM-RAM results
from Figure 6.7.

6.2.9 Improving memory bandwidth on multi-core CPUs

Algorithms presented in this chapter were originally designed to improve the de-
livery speeds for disk-resident data. However, disk is not the only media where
bandwidth becomes the bottleneck. Even in main memory, with high data con-
sumption rates, as is the case in MonetDB/X100, there are cases when RAM
bandwidth limits the performance. This is becoming especially important with
the recent popularity of multi-core CPUs (see Section 2.1.7.2). There, mem-
ory bandwidth needs to be shared among multiple cores, and with the number
of cores continuously increasing, providing enough bandwidth for each core be-
comes a problem. To demonstrate it, we have performed an experiment in which
we run two versions of the TPC-H Query 6 on a dual-chip Core2 Quad 2GHz
machine (8 cores in total), using both uncompressed and compressed table rep-

Section 6.2: Super-scalar compression 151

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

s)

Number of CPUs

Original uncompressed
Original compressed

No-predicates uncompressed
No-predicates compressed

Figure 6.8: Performance of two versions of TPC-H Query 6 (with and without
predicates), on a dual-chip Core2 Quad 2GHz (8 cores in total), using uncom-
pressed and compressed table representation

resentations. The first version (A) is the original query, scanning 4 columns,
the second (B) is the query with all the predicates removed, scanning only two
columns. We used scale-factor 1, making the data fully RAM-resident. In this
setup, the original 4 columns occupy 144MB uncompressed and 37.5MB com-
pressed (4-byte wide l shipdate and l quantity and 8-byte wide l extendedprice
and l discount). The two columns used in version B are 96MB and 21MB, re-
spectively. The original Query 6 is as follows:

SELECT sum(l_extendedprice * l_discount) AS revenue
FROM lineitem
-- The following predicates are only present in version A.
WHERE l_shipdate >= date ’1994-01-01’
AND l_shipdate < date ’1995-01-01’
AND l_quantity < 24;
AND l_discount BETWEEN 0.05 and 0.07

Figure 6.8 presents the results for benchmarks in which we run from 1 to 8
parallel streams of 300 queries, and measure the average query time of the middle
100 queries. For the original query, the uncompressed version always beats the
compressed one. This is because the used combination of predicates selects only
ca. 2% of the original data, and the compressed run always decompresses all
the values, even the ones not used in the actual computation. Also, the impact

152 Chapter 6: Light-weight data compression

of performance on multiple cores is relatively small in the original case without
compression. This is again related to the low selectivity of predicates: only a part
of the data is actually touched by the query. Also, in this query, the memory-
intensive primitives are overlapped with primitives reading the data from the
CPU cache, allowing better use of the bus.
The situation changes dramatically when we look at the version B, which

does not include predicates and really consumes a full 96MB. Profiling shows
that, in the uncompressed case, the majority of time is spent in the memory-
intensive multiplication primitive, computing l extendedprice * l discount.
This computation for 6 millions tuples takes on average 33ms. Since the primitive
consumes 16 bytes for each tuple, its bandwidth requirement is almost 3 GB/s
(per core), which is too high for the memory infrastructure. In the compressed
case, most of the time is spent in the decompression phase, which takes 16 ms,
resulting in the RAM consumption rate of 1.7 GB/s, and the decompression
rate of 6 GB/s. The uncompressed data is in the CPU cache, and the following
multiplication primitive only takes 8ms (12 GB/s data input, only available in
the CPU cache). This allows the compressed version to improve the performance
even on a single core. With more cores, the no-predicate version suffers even
more from the insufficient memory bandwidth, making the improvement thanks
to the data compression as high as 400%.
This experiment demonstrates that date compression can significantly im-

prove query performance by reducing the main-memory bandwidth require-
ments. With future CPU generations having dozens, if not hundreds of cores,
compressing data in RAM might become more and more important.

6.2.10 Choosing compression schemes

The table materialization operator in MonetDB/X100 should automatically de-
cide which compression method to use for each disk block, and with what pa-
rameters. The idea is to first gather a sample (e.g. s=64K values) and look
for the best settings for all applicable schemes. For numeric data types (e.g.
integers, decimals) all three schemes apply. Otherwise, only PDICT is usable.3

When a column is being compressed, the compression ratio can be easily
monitored at the granularity of a disk block or chunk. When it strongly deteri-
orates, we could re-run the compression mode analysis to adapt the parameters
for the next block or even choose another compression scheme. The complexity

3In the near future, we plan to add new super-scalar compression algorithms targeted at
floating point data and text.

Section 6.2: Super-scalar compression 153

of choosing a compression mode is O(s log s) to the size of the sample s, because
it must be sorted as a preprocessing step. We now discuss for each method, how
the optimal parameters are found using the sorted sample.

In PFOR, we can determine in one pass through the sorted sample where
the longest stretch of values starts, such that the difference between first and
last is representable in b bits.

PFOR_ANALYZE_BITS(int n, ANY *V, int b) {
int len = 0, min = 0, range = 1 << b;

for (int lo = 0, hi = 0; hi < n; hi++)
if (V[hi] - V[lo] >= range) {
if (hi - lo > len) {
min = lo; len = hi-lo;

}
while (V[hi] - V[lo] >= range)
lo++;

}
return (min, len + 1);

}

We simply invoke this function for all relevant bit-widths b and choose
the setting that yields best compression, i.e. 1 ¬ b < 8 ∗ sizeof(V) where
b + EPFOR(b) ∗ 8 ∗ sizeof(V) is minimal. In this equation the exception rate
EPFOR(b) =

s−lenb
s , where lenb is returned by the above function, when invoked

on the sample with parameter b.

The parameters for PFOR-DELTA are derived by running this same algo-
rithm on the sorted differences of the sample.

For PDICT, we use once again the sorted sample, to create a (smaller)
frequency histogram h, which we re-sort descending on frequency. PDICT will
encode the first (i.e. largest) 2b buckets of this histogram such that the exception

rate EPDICT (b) = 1 −
∑2b
i=1

h[i]
s . Again, by trying all relevant settings of b, we

can quickly determine the b that yields the highest compression rate. The first
2b values from the histogram are subsequently used to create a super-scalar
perfect hash function (memorized probing in [Hem05]) that is used during PDICT
compression to compute the integer codes for values that must be compressed.
In all, it achieves PDICT compression bandwidth of > 1GB/s on all our three
test platforms.

154 Chapter 6: Light-weight data compression

6.3 TPC-H experiments

Table 6.1 shows the performance of compression algorithms in MonetDB/X100
running the TPC-H benchmark [Tra06] with scale factor 100 on two different
hardware platforms. Low-end servers are represented by an Opteron 2GHz ma-
chine with a 4-disk RAID system delivering around 80 GB/s. The example of a
middle-end system is a Pentium4 machine with 12-disk RAID delivering around
350GB/s. Both machines are dual CPU systems with 4GB memory, but Mon-
etDB/X100 currently uses only one CPU.
We used the same data clustering and index structures as in the previous in-

memory MonetDB/X100 TPC-H SF-100 experiments [BZN05]. Only a subset
of TPC-H queries is presented, since the X100 execution layer currently misses
some of the features necessary to run the remaining ones in a disk-based scenario.
While ColumnBM by default uses the DSM storage model [CK85], we also

present the results for PAX storage [ADHS01]. I/O-wise they are comparable
to an NSM system running DB2, for which the last column lists the official
TPC-H scores. This system uses eight Pentium4 Xeon CPUs (2.8GHz), 16GB
RAM and 142 SCSI disks. Thus, while the CPU used is roughly equivalent to
our middle-end server, it has 4-12x more hardware resources across the board.
The TPC-H data was compressed using PFOR, PFOR-DELTA and PDICT

(enum) compression schemes. The second and third columns of Table 6.1 show
the compression ratios achieved per query. Note that since the “comment” fields
could not be compressed with our algorithms, the PAX queries achieve signifi-
cantly lower compression ratios. Columns 4 and 10 show that in most cases we
reach our decompression speed target of > 2 GB/s.
On the Opteron system, the speedup for most of the DSM queries is in line

with the compression ratio. As the left-most side of Figure 6.9 shows, this is
related to the fact that the low-end disk system makes the queries I/O-bound
even with compression. The middle part of Figure 6.9 shows that on the Pen-
tium4 system with a faster RAID the situation is different with much higher
CPU usage in the uncompressed case. As a result, after increasing the perceived
I/O bandwidth with decompression, all the queries become CPU-bound, such
that the performance gain is less than the compression ratio. With the PAX
storage model and its increased I/O requirements, the CPU processing impact
is reduced again, resulting in better speedups than in the DSM case.
We also implemented the possibility to perform full-page decompression in

ColumnBM, as described in Section 6.2.8. Column 7 of Table 6.1 shows that
such decompression from memory into memory is significantly slower than the
fine-grained decompression between RAM and the CPU Cache, presented in col-

Section 6.3: TPC-H experiments 155

TPC-H compression Pentium4 Xeon
query ratio 3GHz

12 disks
4GB RAM

DSM PAX dec.speed DSM PAX
MB/sec unc. M ⇒ C M ⇒M unc. M ⇒ C

1 2 3 4 5 6 7 8 9

01 4.33 2.30 4502 65.9 50.9 63.8 265.0 103.0
03 3.04 1.66 2306 8.9 6.0 7.1 45.5 27.0
04 8.15 1.82 3709 4.8 1.8 2.3 30.2 16.5
05 3.81 2.24 2421 17.2 16.2 16.7 81.2 36.7
06 4.39 2.25 2200 10.8 4.6 6.1 51.0 22.5
07 1.71 2.01 1457 34.4 40.8 48.3 158.0 76.5
11 2.14 1.08 4084 18.8 18.5 19.4 38.8 35.6
14 1.91 1.94 3688 5.8 4.9 5.4 22.1 11.5
15 2.70 2.13 2584 30.3 31.2 31.3 49.6 40.0
18 3.56 2.75 4315 38.9 13.6 21.3 419.9 151.5
21 4.11 2.12 2600 43.2 24.2 32.1 338.0 157.6

TPC-H compression Opteron 8 x P4 Xeon
query ratio 2GHz 2.8GHz

4 disks 142 disks
4GB RAM 16GB RAM

DSM PAX dec.speed DSM PAX IBM DB2
MB/sec unc. M ⇒ C unc. M ⇒ C UDB 8.1

1 2 3 10 11 12 13 14 15

01 4.33 2.30 3736 307.2 69.6 1098.9 480.3 111.9
03 3.04 1.66 2546 35.0 11.3 183.5 113.6 15.1
04 8.15 1.82 3018 18.2 2.4 115.5 65.9 12.5
05 3.81 2.24 2119 54.3 15.3 300.1 155.9 84.0
06 4.39 2.25 2031 48.2 10.7 232.7 104.3 17.1
07 1.71 2.01 1251 119.8 72.0 614.2 349.4 86.5
11 2.14 1.08 3225 27.0 14.6 180.9 162.2 19.5
14 1.91 1.94 2888 23.7 12.2 90.6 46.9 10.9
15 2.70 2.13 2464 44.9 22.4 209.8 97.1 21.6
18 3.56 2.75 3833 181.9 50.6 1379.7 704.9 318.2
21 4.11 2.12 2520 197.6 46.6 1423.5 759.2 374.9

Legend: unc. – uncompressed data,

M ⇒ C – memory-to-cache decompression, M ⇒M – memory-to-memory decompression

Table 6.1: TPC-H SF-100 experiments on MonetDB/X100 (except DB2 results,
taken from www.tpc.org)

156 Chapter 6: Light-weight data compression

0%

20%

40%

60%

80%

100%

120%

1 3 4 5 6 7 11 14 15 18 21

T
im

e
no

rm
al

iz
ed

 to
un

co
m

pr
es

se
d

qu
er

y

Opteron 2GHz, 4-disk RAID, DSM

0%

20%

40%

60%

80%

100%

120%

1 3 4 5 6 7 11 14 15 18 21

T
im

e
no

rm
al

iz
ed

 to
un

co
m

pr
es

se
d

qu
er

y

Pentium4 3GHz, 12-disk RAID, DSM

0%

20%

40%

60%

80%

100%

120%

1 3 4 5 6 7 11 14 15 18 21

T
im

e
no

rm
al

iz
ed

 to
un

co
m

pr
es

se
d

qu
er

y

TPC-H Query
 left bar - uncompressed run, right bar - compressed run

Pentium4 3GHz, 12-disk RAID, PAX

processing decompression IO stalls

Figure 6.9: Profiling details for the TPC-H SF-100 results from Table 6.1

Section 6.4: Inverted file compression 157

PFOR-DELTA carryover-12 shuff
comp comp dec comp comp dec comp comp dec
ratio MB/s MB/s ratio MB/s MB/s ratio MB/s MB/s

INEX 1.75 679 3053 2.12 49 524 2.45 3.5 82
TREC fbis 3.47 788 3911 4.26 98 740 5.11 190 164
TREC fr94 3.12 682 3196 3.49 84 689 4.65 149 154
TREC ft 3.13 761 3443 3.47 84 704 4.89 178 157

TREC latimes 2.99 742 3289 3.30 79 683 4.61 164 153

Table 6.2: PFOR-DELTA on Inverted Files

umn 6. The main reason for this is the high-cost of in-memory materialization
of decompressed data. Another interesting feature of our fine-grained decom-
pression can be observed in Figure 6.9, where the processing in the compressed
case is slightly faster. This is caused by the fact that the main-memory access is
performed by the decompression routines, and the query execution layer reads
the data directly from the CPU cache.

6.4 Inverted file compression

Compression of inverted files to improve I/O bandwidth and sometimes latency
(due to reduced seek distances on the compressed file) is important for the
performance of information retrieval systems [WMB99]. In this area, there is a
trend to use lightweight-compression schemes rather than the classical storage-
optimal schemes [Tro03, AM05].
We evaluated the performance of PFOR-DELTA with respect to both com-

pression ratio and speed on inverted file data derived from the INEX and TREC
document collections, and compared it with the implementation of the recently
proposed carryover-12 compression scheme [AM05], which was designed for high
decompression speeds. Furthermore, performance was compared to that of a
semi-static Huffman coder, which is commonly used for inverted file compres-
sion. Table 6.2 summarizes the results on our 3GHz Pentium 4 machine, and
shows that PFOR-DELTA improves decompression bandwidth of carryover-12
6.5 times, while only reducing the compression ratio by 15%.
To verify the need for such decompression speeds, we measured the raw

query bandwidth of a typical retrieval query that looks up the top-N documents
in which a given term from the TREC fbis dataset occurs most frequently (a
merge-join of the postings table with the document offsets, followed by ordered
aggregation and heap-based top-N). Within our MonetDB/X100 system, this

158 Chapter 6: Light-weight data compression

query was able to process a list of d-gaps at 580MB/s, which implies that even
on our 350MB/s RAID system it would remain I/O-bound. Using equation 6.1 to
compute the decompression bandwidth C that achieves an equilibrium between
CPU time spent on query processing and decompression, yields 580×C580+C = 350,
which leads to C = 883MB/s. Table 6.2 shows that decompression bandwidths
from shuff and even carryover-12 are below this point, hence only make the
query slower, while PFOR-DELTA accelerates it from 350MB/s to 504MB/s.
The benefit of using PFOR-DELTA on IR tasks has been evaluated with

Terabyte-TREC experiments discussed in Section 8.2.2. Additionally, further
research by Zhang et al [ZLS08] has demonstrated that this technique is com-
petitive against a large class of other methods, and the ideas behind it can also
be used to improve other compression algorithms.

6.5 Conclusions and future work

This chapter presented our work on using data compression to scale the high per-
formance of MonetDB/X100 engine to disk-based datasets. We proposed a new
set of super-scalar compression algorithms. Their “patching” approach allows
these algorithms to handle outliers gracefully while still exploit the pipelined
features of modern CPUs. Additionally, we introduced the idea of decompress-
ing between RAM and the CPU Cache, rather than the common idea to apply
it between I/O and RAM. Our results show that this not only allows the buffer
manager to store more (compressed) data, but is also faster to (de)compress. As
a result, our algorithms provide decompression speeds in the range of > 2GB/s.
This is an order of magnitude faster than conventional compression algorithms,
making decompression almost transparent to query execution. By using these
techniques in TPC-H, TREC and INEX datasets, we managed to significantly
reduce or completely eliminate the I/O bottleneck. In the future, we plan to
extend the applicability of our system by introducing additional compression
algorithms specialized for other data types and distributions.

Chapter 7

Cooperative scans

The previous chapter focused on improving the perceived disk bandwidth from
the point of view of a single scan-based query. Another possible direction is
to exploit the fact that with multiple queries running at the same time in a
system, there are opportunities to share the data between them. This is typically
achieved through special buffering policies in the storage layers. While there has
been a lot of previous research in this area [CD85, SS86], disk scans were mostly
considered trivial, and simple LRU or MRU buffering policies were proposed for
them [CR93, SS86]. We show that if scans start at different times, these policies
achieve only a low amount of buffer reuse. To improve this situation, some
systems support the concept of circular scans [Col98, Coo01, NCR02, HSA05]
which allows queries that start later to attach themselves to already active scans.
As a result, the disk bandwidth can be shared between the queries, resulting in
a reduced number of I/O requests. However, this strategy is not efficient when
queries process data at different speeds or a query scans only a range of records
instead of a full table.
In this chapter we analyze the performance of existing scan strategies, iden-

tifying three basic approaches: normal, attach and elevator. In normal, a tra-
ditional LRU buffering policy is employed, while in both attach and elevator
incoming queries can join an ongoing scan in case there is overlap in data need,
with the main difference that elevator employs a single, strictly sequential scan
cursor, while attach allows for multiple (shared) cursors. Benchmarks show that
they provide sharing of disk bandwidth and buffer space only in a limited set of
scenarios. This is mostly caused by the fact that the disk access order is prede-
fined when a query enters the system, hence it cannot be adjusted to optimize

159

160 Chapter 7: Cooperative scans

Manager
Buffer
ActiveBuffer

Manager

pages chunk

Scan Scan Scan CScan CScan CScan

Disk

Figure 7.1: Normal scans (left) versus Cooperative Scans (right)

performance in dynamic multi-query scenarios.
To overcome these limitations, we introduce the Cooperative Scans frame-

work, depicted in Figure 7.1. It involves CScan – a modified (index) Scan opera-
tor that announces the needed data ranges upfront to an active buffer manager
(ABM). The ABM dynamically optimizes the order of disk accesses, taking into
account all current CScan requests on a relation (or a set of clustered relations).
This framework can run the basic normal, attach and elevator policies, but
also a new policy, relevance, that is central to our proposal. Besides optimizing
throughput, the relevance policy also minimizes latency. This is done by depart-
ing from the strictly sequential access pattern as present in attach and elevator.
Instead, relevance makes page load and eviction decisions based on per-page
relevance functions, which, for example, try to evict pages with a low number
of interested queries as soon as possible, while prioritizing page reads for short
queries and pages that have many interested queries.
To further illustrate the need for a more flexible approach to I/O schedul-

ing, consider the following example. Assume that a system has to execute two
queries, Q1 and Q2, which enter the system at the same time and process data
at the same speed. Q1 needs to read 30 pages and is scheduled first, while Q2
needs 10 different pages. If those queries get serviced in a round-robin fashion,
as in the normal policy, Q2 finishes after 20 pages are loaded, and Q1 after 40,
giving an average query latency of 30. The elevator policy may perform better,
by first fully servicing Q2 and then Q1, reducing the average waiting time from
30 to 25. Still, elevator can choose the opposite order, resulting in waiting times
of 30 and 40, hence actually increasing the average time. With relevance, we
aim to get close to the optimal average query latency, without relying on the
sequential scan order, by making flexible I/O scheduling decisions.

Section 7.1: Traditional scan processing 161

The outline of this chapter is as follows. First, Section 7.1 analyzes existing
approaches to scan processing. In Section 7.2 we introduce the Cooperative
Scans framework for row stores and we validate its performance in Section 7.3.
In Section 7.4 we extend Cooperative Scans to column stores. The incorporation
of ABM into an existing DBMS is discussed in Section 7.5, where we also explore
possibilities of adapting order-aware query processing operators to handle out-
of-order data delivery. We discuss related work in Section 7.6 before concluding
in Section 7.7.

7.1 Traditional scan processing

With multiple scans running concurrently, in a naive implementation sequen-
tial requests from different queries can interleave, causing frequent disk-arm
movements and resulting in a semi-random access pattern and low overall disk
throughput. To avoid this problem, most database systems execute such scans
using large isolated I/O requests spanning over multiple pages, together with
physical clustering of table pages. As a result, the overhead of shifting the disk-
arm is amortized over a large chunk of data, resulting in an overall bandwidth
comparable to a standalone scan.
Even when using bandwidth-efficient chunk-based I/O, different scheduling

policies are used for concurrent scans. The most naive, called normal in the
rest of this chapter, performs scans by simply reading all disk blocks requested
by a query in a sequential fashion, using an LRU policy for buffering. The
disadvantage of LRU is that if one query starts too long after the other, the
loaded pages will already be swapped out before they can be reused. As a result,
assuming there is no buffer reuse between the queries, and queries are serviced
in a round-robin fashion, the expected number of I/Os performed in the system
until a new query Qnew that reads Cnew chunks finishes can be estimated by:
Cnew +

∑
q∈queriesMIN(Cnew, Cq).

The major drawback of the normal policy is that it does not try to reuse data
shared by different running queries. In a dynamic environment, with multiple
partial scans running at the same time, it is likely that the buffer pool contains
some data that is useful for a given query. With a table consisting of CT chunks,
a query that needs CQ chunks and a buffer pool of CB chunks, the probability
of finding some useful data in the randomly-filled buffer is:

Preuse = 1−
CB−1∏
i=0

CT − CQ − i
CT − i

(7.1)

162 Chapter 7: Cooperative scans

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
a

us
ef

ul
 c

hu
nk

Chunks needed by a query (out of 100)

50% buffered
20% buffered
10% buffered

5% buffered
1% buffered

Figure 7.2: Probability of finding a useful chunk in a randomly-filled buffer pool,
with varying buffer pool size and query demand

As Figure 7.2 shows, even for small scanned ranges and buffer sizes, this prob-
ability can be high, e.g. over 50% for a 10% scan with a buffer pool holding
10% of the relation. Unfortunately, the normal policy, by enforcing a sequential
order of data delivery, at a given time can use only a single page, reducing this
probability to CB/CT .
In many cases it is possible to relax the requirement of sequential data de-

livery, imposed by normal. Even when using a clustered index for attribute
selection, consuming operators often do not need data in a particular order.
This allows for scheduling policies with “out-of-order” data delivery.
A simple idea of sharing disk access between the overlapping queries is used in

the attach strategy. When a query Qnew enters the system, it looks at all other
running scans, and if one of them (Qold) is overlapping, it starts to read data
at the current Qold’s position. To optimize performance, attach should choose
a query that has the largest remaining overlap with Qnew. Once Qnew reaches
the end of its desired range, it starts from the beginning until reaching the
original position. This policy, also known as “circular scans” or “shared scans”,
is used among others in Microsoft SQLServer [Coo01], RedBrick [Col98], and
Teradata [NCR02], and allows significant performance improvement in many
scenarios. The attach policy, however, may suffer from three problems. First,
if one query moves much faster than the other, the gap between them may
become so large that pages read by the fastest query are swapped out before
the slower reaches them (they “detach”). Second, if queries are range scans,
it is possible that one of the queries that process data together finishes, and
the other continues by itself, even though it could attach to another running

Section 7.2: Cooperative Scans 163

query. Also, if a full scan is underway but not yet in its range, attach misses
this sharing opportunity. Finally, when exploiting per-block meta-data, the scan
request can consist of multiple ranges, making it even harder to benefit from
sharing a scan with a single query. As a result, the upper bound on the number
of I/Os performed by attach is the same as in normal.
The elevator policy is a variant of attach that addresses its problems by

enforcing strict sequential reading order of the chunks for the entire system.
This optimizes the disk latency and minimizes the number of I/O requests, and
thus leads to good disk bandwidth and query throughput. However, the problem
here is that query speed degenerates to the speed of the slowest query, because
all queries wait for each other. Also, range queries often need to wait a long
time before the reading cursor reaches the data that is interesting for them. In
principle, in the worst case the number of I/Os performed by a system before
a fresh query Qnew finishes can be MIN(CT , Cnew +

∑
q∈queries Cq), where CT

is the number of chunks in the entire table.

7.2 Cooperative Scans

The analysis in the previous section, further confirmed by results in Section 7.3,
demonstrates that existing scan-processing solutions that try to improve over
the normal policy still suffer from multiple inefficiencies. In this section we
propose a new “Cooperative Scans” framework that avoids these problems. As
Figure 7.1 presents, it consists of a cooperative variant of the traditional (index)
Scan operator, named CScan, and an Active Buffer Manager (ABM).
The new CScan operator registers itself as an active scan on a range or a

set of ranges from a table or a clustered index. CScan has the same interface as
the normal Scan operator, but it is willing to accept that data may come in a
different order. Note that some query plans exploit column ordering present on
disk. We discuss integration of such queries in our framework in Section 7.5.
The Active Buffer Manager (ABM) extends the traditional buffer manager

in that it keeps track of CScan operators and which parts of the table are still
needed by each of them, and tries to schedule disk reads such that multiple
concurrent scans reuse the same pages. The overall goal of ABM is to minimize
the average query cost, keeping the maximum query execution cost reasonable
(i.e. ensuring “fair” treatment of all queries). As discussed in Section 4.3, in
MonetDB/X100 scan processing is usually performed with large I/O units we
call chunks, to achieve good bandwidth with multiple concurrent queries. Note
that a chunk in memory does not have to be contiguous, as it can consists of

164 Chapter 7: Cooperative scans

CScan process
selectChunk(qtrigger)
| if finished(qtrigger)
| | return NULL
| else
| | if abmBlocked()
| | | signalQueryAvailable()
| | chunk = chooseAvailableChunk(qtrigger)
| | if (chunk == NULL)
| | | chunk = waitForChunk(qtrigger)
| | return chunk

chooseAvailableChunk(qtrigger)
| cavailable = NULL, U = 0
| foreach c in interestingChunks(qtrigger)
| | if chunkReady(c) and useRelevance(c) > U
| | | U = useRelevance(c)
| | | cavailable = c
| return cavailable

Figure 7.3: Pseudo-code for the Relevance policy: CScan operator

multiple pages filled in with a single scatter-gather I/O request. In our framework
there are two more reasons for using chunks. First, the number of chunks is
usually one or two orders of magnitude smaller than the number of pages, thus
it becomes possible to have chunk-level scheduling policies that are considerably
more complex than disk-block-level policies. Secondly, it is possible to extend
chunks to be logical entities whose boundaries may not even correspond exactly
to disk block boundaries, a feature that will be exploited in the more complex
scenarios with column-based storage.
In our system, the Cooperative Scans framework implements the traditional

scan-processing policies: normal, attach and elevator. However, its main benefit
comes from a newly introduced relevance policy that takes scheduling decisions
by using a set of relevance functions. Both the CScan and ABM processes, as well
as the relevance functions used by them, are described in Figures 7.3, 7.4 and 7.5,
respectively.
As Figure 7.3 illustrates, the CScan process is called on behalf of a certain

query, qtrigger, that contains a CScan operator in its query plan. Each time
qtrigger needs a chunk of data to process, selectChunk is called. This triggers
a search over all buffered chunks that still need to be processed by the query,
in chooseAvailableChunk, and returns the most relevant one, as governed by

Section 7.2: Cooperative Scans 165

ABM process
main()
| while (true)
| | query = chooseQueryToProcess()
| | if query == NULL
| | | blockForNextQuery()
| | | continue
| | chunk = chooseChunkToLoad(query)
| | slot = findFreeSlot(query)
| | loadChunk(chunk, slot)
| | foreach q in queries
| | | if (chunkInteresting(q, chunk) and queryBlocked(q)
| | | | signalQuery(q, chunk)

chooseQueryToProcess()
| relevance = −∞, query = NULL
| foreach q in queries
| | qr = queryRelevance(q)
| | if (query == NULL or qr > relevance)
| | | relevance = qr
| | | query = q
| return query

chooseChunkToLoad(qtrigger)
| cload = NULL, L = 0
| foreach c in interestingChunks(qtrigger)
| | if (not chunkReady(c)) and loadRelevance(c) > L
| | | L = loadRelevance(c)
| | | cload = c
| return cload

findFreeSlot(qtrigger)
| sevict = NULL, K = ∞
| foreach s in slots
| | if empty(s)
| | | return s
| | c = chunkInSlot(s)
| | if (not currentlyUsed(s)) and (not interesting(c, qtrigger))
| | and (not usefulForStarvedQuery(c))
| | and keepRelevance(c) < K
| | | K = keepRelevance(c)
| | | sevict = s
| freeSlot(sevict)
| return sevict

Figure 7.4: Pseudo-code for the Relevance policy: Active Buffer Manager

166 Chapter 7: Cooperative scans

NSM Relevance Functions
queryRelevance(q)
| if not queryStarved(q)
| | return −∞
| return - chunksNeeded(q) +
| | waitingTime(q) / runnningQueries()

useRelevance(c, qtrigger)
| return Qmax− numberInterestedQueries(c)

loadRelevance(c)
| return numberInterestedStarvedQueries(c) * Qmax
| + numberInterestedQueries(c)

keepRelevance(c, qtrigger)
| return numberInterestedAlmostStarvedQueries(c) * Qmax
| + numberInterestedQueries(c)

queryStarved(qtrigger)
| return numberOfAvailableChunks(qtrigger) < 2

Figure 7.5: Pseudo-code for the Relevance policy: Relevance functions

useRelevance. If no such chunk is available, the operator blocks until the ABM
process loads a chunk that is still needed by qtrigger. Our useRelevance function
promotes chunks with the smallest number of interested queries. By doing so,
the less interesting chunks will be consumed early, making it safe to evict them.
This also minimizes the likelihood that less interesting chunks will get evicted
before they are consumed.
The ABM thread continuously monitors all currently running queries and their

data needs. It schedules I/O requests on behalf of the query with the highest
priority, considering the current system state. For this query, it chooses the most
relevant chunk to load, possibly evicting the least relevant chunk present in the
buffer manager. Once a new chunk is loaded into the ABM, all blocked queries
interested in that chunk are notified. This is the core functionality of ABM’s main
loop, as found in the middle part of Figure 7.4.
The chooseQueryToProcess call is responsible for finding the highest priority

query, according to queryRelevance, to load a chunk for. This queryRelevance
function considers non-starved queries (i.e. a queries that have 2 or more avail-
able chunks, including the one they are currently processing) equal, assigning
them the lowest priority possible. Starved queries are prioritized according to the

Section 7.3: Row-wise experiments 167

amount of data they still need, with shorter queries receiving higher priorities.
However, to prevent the longer queries from being starved forever, the priorities
are adjusted to also promote queries that are already waiting for a long time.
By prioritizing short queries, ABM tries to avoid situations where chunks are as-
signed to queries in a round-robin fashion, as this can have a negative impact
on query latency. Besides, a chunk loaded for a short query has a higher chance
of being useful to some large query than the other way around. In case ABM does
not find a query to schedule a chunk for, it blocks in blockForNextQuery, until
the CScan operator wakes it up again using signalQueryAvailable.
Once ABM has found a query to schedule a chunk for, it calls the chooseChunk-

ToLoad routine to select a not yet loaded chunk that still needs to be processed
by the selected query. The loadRelevance function determines which chunk will
actually be loaded, not only by looking at what is relevant to the current query,
but also taking other queries needs into consideration. To maximize sharing,
it promotes chunks that are needed by the highest number of starved queries,
while at the same time slightly adjusting priorities to prefer chunks needed by
many non-starved queries.
If there are no free slots in the buffer pool, ABM’s findFreeSlot routine needs

to swap out the chunk with the lowest keepRelevance. This function is similar
to loadRelevance, except that when looking at queries, we treat queries on the
border of starvation as being starved, to avoid evicting their chunks, which
would make them starved, hence schedulable, immediately.
The relevance policy tries to maximize buffer pool reuse without slowing

down fast queries. Thus, a slow query will re-use some of the chunks loaded
by a fast query, skipping over chunks that it was too slow to process. These
are read again later in the process, when the fast query might already be gone.
The access pattern generated by this approach may be (quasi-) random, but
since chunks consist of multiple sequential pages, disk (arm) latency is still well
amortized.

7.3 Row-wise experiments

Benchmark system: We carried out row storage experiments using the PAX
storage model, which is equivalent to NSM in terms of I/O demand, but bet-
ter suited for the MonetDB/X100 execution layer. The chunk size used was
16MB, and the ABM buffer-pool size was set to 64 chunks (1GB), unless stated
otherwise. Direct I/O was used, to avoid operating system buffering. Our test
machine was a dual-CPU AMD Opteron 2GHz system with 4GB of RAM. The

168 Chapter 7: Cooperative scans

storage facility was a 4-way RAID system delivering slightly over 200 MB/s.
Benchmark dataset: We used the standard TPC-H [Tra06] benchmark data
with scale factor 10. In this setting the lineitem table consumes over 4GB of
disk space. The other tables are fully cached by the system.
Queries: To allow flexible testing of our algorithms we have chosen two queries
based on the TPC-H benchmark. Query FAST (F) is TPC-H Q6, which is a
simple aggregation. Query SLOW (S) is TPC-H Q1 with extra arithmetic com-
putations to make it more CPU intensive. For all queries we allow arbitrary
scaling of the scanned table range. In this section we use the notation QUERY-
PERCENTAGE, with QUERY representing the type of query, and PERCENT-
AGE the size of the range being scanned. For example, with F-10 we denote
query FAST, reading 10% of the full relation from a random location. We use
multiple query streams, each sequentially executing a random set of queries.
There is a 3 second delay between starting the streams, to better simulate
queries entering an already-working system.

7.3.1 Comparing scheduling policies

Table 7.1 shows the results for all scheduling policies when running 16 streams
of 4 queries. We used a mix of slow and fast queries with selectivity of 1%,
10%, 50% and 100%. The two major system-wide results are the average stream
running time, representing the system throughput, and the average normalized
latency of a query (running time in this benchmark divided by the base time,
when the query runs by itself with an empty buffer), representing the system
latency. Additionally we provide the total execution time, CPU-utilization, and
the number of issued I/Os. The difference between the total time and the average
stream time comes from the random distribution of queries in the streams,
resulting in a significant variance of stream running times. For each query type
and policy we provide the average latency, normalized latency and number of
I/Os issued when scheduling this query type. Additionally, Figure 7.6 presents
a detailed analysis of the I/O requests issued by each policy.
As expected, the normal policy achieves the worst performance. As Figure 7.6

shows, it maintains multiple concurrent sequential scans, which leads to the
largest number of I/O requests and a minimal buffer reuse. Since the query load
is relatively CPU-intensive, it still manages to use a significant fraction of the
CPU time.
The attach policy allows merging requests from some queries. As a result,

it consistently improves the performance of all query types and the system
throughput. Still, in Figure 7.6 we see that there are multiple (albeit fewer than

Section 7.3: Row-wise experiments 169

Normal Attach

System statistics
Avg. stream time 283.72 160.81
Avg. normalized latency 6.42 3.72
Total time 453.06 281.19
CPU use 53.20% 81.31%
I/O requests 4186 2325

Query statistics
query count standalone latency(sec) norm. I/Os latency(sec) norm. I/Os

cold time avg stddev lat. avg stddev lat.

F-01 9 0.26 1.71 1.02 6.58 2 1.02 0.49 3.92 2
F-10 7 2.06 13.97 5.69 6.78 23 6.23 2.56 3.02 18
F-50 6 10.72 103.59 14.96 9.66 78 58.77 10.96 5.48 67
F-100 9 20.37 192.82 31.56 9.47 153 96.98 23.33 4.76 69
S-01 13 0.38 1.67 1.25 4.39 2 1.19 0.65 3.13 3
S-10 6 3.55 21.58 5.11 6.08 19 15.12 4.08 4.26 24
S-50 6 17.73 78.23 29.07 4.41 95 46.98 16.82 2.65 79
S-100 8 35.27 179.35 59.04 5.09 177 105.51 33.40 2.99 60

Elevator Relevance

System statistics
Avg. stream time 138.41 99.55
Avg. normalized latency 13.52 1.96
Total time 244.45 238.16
CPU use 90.20% 93.94%
I/O requests 1404 1842

Query statistics
query count standalone latency(sec) norm. I/Os latency(sec) norm. I/Os

cold time avg stddev lat. avg stddev lat.

F-01 9 0.26 5.31 7.33 20.42 - 0.52 0.36 2.00 2
F-10 7 2.06 15.17 8.63 7.36 - 3.30 1.30 1.60 18
F-50 6 10.72 44.87 7.92 4.19 - 18.21 6.64 1.70 43
F-100 9 20.37 59.60 19.57 2.93 - 29.01 8.17 1.42 69
S-01 13 0.38 15.01 15.04 39.50 - 0.55 0.29 1.45 2
S-10 6 3.55 20.29 23.93 5.72 - 11.30 5.98 3.18 22
S-50 6 17.73 37.39 14.23 2.11 - 37.77 15.66 2.13 48
S-100 8 35.27 79.39 24.37 2.25 - 98.71 29.89 2.80 44

Table 7.1: Row-storage experiments (PAX) with a set of FAST and SLOW
queries scanning 1%, 10%, 50% and 100% of a table (16 streams of 4 random
queries, all times in seconds)

170 Chapter 7: Cooperative scans

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ch
un

k

normal

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ch
un

k

attach

"detach"

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ch
un

k

elevator

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ch
un

k

time (sec)

relevance

Figure 7.6: Behavior of different scheduling algorithms: disk accesses over time

Section 7.3: Row-wise experiments 171

in normal) concurrent scans, since not all queries can share the same chunk
sequence. Additionally, we can see that a faster query can detach from a slower
one (circled), resulting in a split of a reading sequence, further reducing the
performance.
The elevator policy shows a further reduction of the I/O requests and im-

provement of system throughput. This is a result of its simple I/O pattern seen
in Figure 7.6. However, we see that the average normalized latency is very bad
for this policy. This is caused by the short queries that suffer from a long waiting
time, and achieve results even worse than in normal. This blocking of queries
also degrades the overall system time, since it delays the start moment of the
next query in a given stream. We also see that fast and slow queries differ little
in performance - this is caused by the fast queries waiting for the slow ones.
Our new relevance policy achieves the best performance, both in terms of

global system parameters, as well as in most query times. As Figure 7.6 shows,
its I/O request pattern is much more dynamic than in all the other policies.
Interestingly, although relevance issues more I/Os than elevator, it still results
in a better throughput. This is because the system is mostly CPU-bound in this
case, and extra available I/O time is efficiently used to satisfy further query
requirements. Also, relevance differs from other policies by significantly improv-
ing the performance of I/O bound queries. Average query latency is three times
better than normal and two times better than attach (I/O bound queries like
F-100 can even be three times faster than attach).

7.3.2 Exploring many different query mixes

To provide more than accidental evidence of the superior performance of rele-
vance, we conducted experiments with the same basic settings as in the previous
section: 16 streams of 4 queries, TPC-H table with scale factor 10 and buffer
size of 1GB. However, we changed the set of queries to explore two dimensions:
range size and data-processing speed. Figure 7.7 shows the results, where we
compare throughput as the average stream running time (y axis) and average
normalized query latency (x axis) of normal, attach and elevator, with respect
to our relevance policy. Each point represents a single run for one policy. The
point labels describe runs in a format “SPEED-SIZE”, where SPEED defines
what query speeds were used (FS - mix of fast and slow queries, F - only fast
ones, FFS - 2 times more fast queries than slow ones etc.), and SIZE represents
the size of the range being scanned: S - short (mix of queries reading 1, 2, 5, 10
and 20% of a table), M - mixed (1,2,10,50,100) and L - long (10,30,50,100).
From this experiment we conclude that indeed relevance, representing the

172 Chapter 7: Cooperative scans

 1.2

 1.5

 2

 2.5

 3

 4

 5

 6

 7

 1

 1.2 1.5 2 2.5 3 4 5 6 7 8 1

A
ve

ra
ge

 s
tr

ea
m

 ti
m

e
/ R

E
LE

V
A

N
C

E

Average normalized query latency / RELEVANCE

relevance
normal

SF-M

SF-S

SF-L

S-M
S-S

S-L

F-M

F-S

F-L

SSF-M

SSF-S

SSF-L

FFS-M

FFS-S

FFS-L

attach

SF-M
SF-S

SF-L

S-M

S-S

S-L

F-M

F-S

F-L

SSF-M

SSF-S SSF-L

FFS-M

FFS-SFFS-L

elevator

SF-M

SF-S

SF-L

S-M

S-SS-L

F-M

F-S
F-L SSF-M

SSF-S

SSF-L

FFS-M

FFS-S

FFS-L

Figure 7.7: Performance of various scheduling policies for query sets varying in
processing speed and scanned range

(1,1) point in this scatter plot, is consistently better than all other policies. Re-
call that our objective was to find a scheduling policy that works well both on
the query throughput and on the query latency dimension, and this is exactly
what is shown in Figure 7.7. This scatter plot also allows us to better understand
the other policies. We see that normal is inferior on both dimensions, whereas el-
evator gets close to relevance on throughput, but its performance is significantly
hindered by poor query latencies. As for the attach, it does find a balance be-
tween throughput and latency, but it is consistently beaten by relevance in both
dimensions.

Section 7.3: Row-wise experiments 173

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 20 40 60 80 100N
um

be
r

of
 I/

O
 r

eq
ue

st
s

CPU-intensive query set
(S-01,S-10,S-50,S-100,
F-01,F-10,F-50,F-100)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 20 40 60 80 100

S
ys

te
m

 ti
m

e
(s

ec
)

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100

A
ve

ra
ge

 n
or

m
al

iz
ed

 q
ue

ry
 la

te
nc

y

Buffer capacity
(percentage of the table size)

normal attach

 0
 200
 400
 600
 800

 1000
 1200
 1400

 20 40 60 80 100

I/O-intensive query set
(F-01,F-10,F-50,F-100)

	

 0
 20
 40
 60
 80

 100
 120
 140

 20 40 60 80 100

 0
 1
 2
 3
 4
 5
 6
 7
 8

 20 40 60 80 100

Buffer capacity
(percentage of the table size)

elevator
relevance

Figure 7.8: Behavior of all scheduling policies under varying buffer pool capac-
ities

174 Chapter 7: Cooperative scans

7.3.3 Scaling the data volume

With growing dataset sizes, the percentage of a relation that can be stored
inside the buffer pool decreases. To simulate this, we tested the performance
of different policies under varying buffer size capacities, ranging from 12.5% to
100% of the full table size. This allows us to observe how different scheduling
policies would behave under growing relation sizes, when a smaller fraction of
a table can be buffered. In this experiment we used a version of our relation
trimmed-down to 2 GB, that can be fully cached in the memory of our bench-
mark machine. Figure 7.8 shows the results of a benchmark with two sets of
queries, one disk-intensive, consisting only of fast queries, and a CPU-intensive
one, consisting of a mix of fast and slow queries. We used 8 streams of 4 queries.
As expected, the number of I/Os is decreasing with increasing buffer size. In

the disk-intensive case, the absolute system performance is directly influenced
by this number, because the system is never CPU-bound. Still, thanks to better
request scheduling, the relevance policy manages to improve the performance,
issuing significantly fewer I/O requests even when using a 87.5% buffer capacity.
In the CPU-intensive scenarios, the number of I/Os influence the absolute time
only partially. This is because most algorithms manage to make a system CPU-
bound with some buffer capacity. For relevance even a small buffer size of 12.5%
of the full table is enough to achieve this, as we can see by its mostly constant
performance.
Interestingly, Figure 7.8 shows that the performance advantages of relevance

over the other policies as observed in Figure 7.7 are maximized when tables
get bigger (i.e. at low buffered percentages). When looking at attach, the most
viable competitor, we see that throughput in I/O bound situations, as well as
latency in CPU bound queries deteriorate strongly, and we expect the advantage
of relevance to grow even more if table sizes become huge.

7.3.4 Many concurrent queries

With more concurrent queries the opportunities for data-reuse increase. In Fig-
ure 7.9 we present how the average query time changes when an increasing
number of concurrent queries reads 5, 20 and 50% of our relation, using a buffer
pool of 1GB. As expected, the benefit of relevance over normal grows with larger
scans and more concurrency. We see that relevance also enhances its advantage
over attach when more queries run concurrently, even exceeding the factor two
observed in Figures 7.8 and 7.7, when scan ranges are very or moderately selec-

Section 7.3: Row-wise experiments 175

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y

Number of queries

5% scans

normal
attach

elevator
relevance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32

Number of queries

20% scans

normal
attach

elevator
relevance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32

Number of queries

50% scans

normal
attach

elevator
relevance

Figure 7.9: Performance comparison with varying number of concurrent queries
and scanned ranges

tive. As this query set is uniform in terms of range sizes, elevator can score close
to relevance, but we know from previous experiments that on combinations of
short and long ranges it is not a viable competitor.

7.3.5 Scheduling-cost scalability

The cost of scheduling in relevance is significantly higher than for other policies.
For example, the loadRelevance function needs to check every query for every
table chunk, and do this for each chunk a query requests. Figure 7.10 presents
the average times spent on scheduling when running 16 concurrent streams of
4 I/O-bound queries, each with the same relation stored in a different number
of chunks of varying sizes. As expected, the overhead grows super-linearly -
with smaller chunks, every query needs to scan more of them, and the decision
process for each data request needs to consider more chunks. Still, even with the
largest tested number of chunks, the scheduling overhead in the worst case does
not exceed 1% of the entire execution time. In situations when such overhead
is not acceptable, e.g. with relations consisting of hundreds of thousands of
chunks, slightly less complex policies can be considered. Also, our relevance
implementation is rather naive, leaving opportunities for optimizations that can
significantly reduce the scheduling cost.

176 Chapter 7: Cooperative scans

 0.01

 0.1

 1

 10

 100

 128 256 512 1024 2048

S
ch

ed
ul

in
g

tim
e

(m
s)

Number of chunks
(chunk size = 2GB / number)

1% scan
10% scan

100% scan

 1e-05

 0.0001

 0.001

 0.01

 128 256 512 1024 2048
F

ra
ct

io
n

of
 th

e
ex

ec
ut

io
n

tim
e

Number of chunks
(chunk size = 2GB / number)

1% scan
10% scan

100% scan

Figure 7.10: Scheduling time and fraction of execution time when querying 1%,
10% and 100% of a 2GB relation with varying chunk size / number

7.4 Improving DSM scans

After our successful experiments with relevance in row-storage, we now turn our
attention to column-stores. The decomposed storage model (DSM) has recently
gained popularity for its reduced disk-bandwidth needs, faster query process-
ing thanks to improved data locality [ADHS01, HP03], possibility of vectorized
processing (Section 5.2.2) and additional compression opportunities (Chapter 6,
[AMF06]). While we will show that relevance can also be successful here, we first
discuss why DSM is much more complex than NSM when it comes to scans in
general and I/O scheduling in particular, and how this influenced our Cooper-
ative Scans framework.

7.4.1 DSM challenges

Table columns stored using DSM may differ among each other in physical data
representation width, either because of the data types used, or because of com-

Section 7.4: Improving DSM scans 177

P
F

O
R

(o
id

):2
1
b

it

c
h

u
n

k
 0

c
h

u
n

k
 1

c
h

u
n

k
 2

P
F

O
R

−
D

E
L

T
A

(o
id

):3
b

it

c
h

u
n

k
 3

DISK PAGE

o
rd

e
rk

e
y

p
a

rtk
e

y

re
tu

rn
fla

g

e
x

te
n

d
e

d
p

ric
e

c
o

m
m

e
n

t
s
tr:2

5
6
b

it

d
e
c
im

a
l:6

4
b

it

P
D

IC
T

(s
tr):2

b
it

LINEITEM COLUMNS

Figure 7.11: Compressed column storage: more complex logical chunk – physical
page relationships

pression. For example, Figure 7.11 depicts column storage of a part of the TPC-H
lineitem table, with some columns compressed with techniques presented in
Chapter 6. This shows that we can not assume a fixed number of tuples on a
disk page, even within a single column. As a result, a chunk cannot consist of a
fixed number of disk pages as in NSM. Instead, chunks are logical concepts, i.e.
a horizontal partitioning of the table on the tuple granularity. For example, one
may divide a table in conceptual chunks of a 100.000 tuples, but it is also possi-
ble to use variable-size chunks, e.g. to make the chunk boundary always match
some key boundary. This implies that chunk boundaries do not align with page
boundaries. The underlying storage manager should provide an efficient means
to tell which pages store data from a chunk. Depending on the physical data
representation, a single logical chunk can consist of multiple physical pages, and
a single physical page can contain data for multiple logical chunks.

This logical-physical mismatch present in DSM becomes even more prob-
lematic when using large physical blocks of a fixed size for I/O, a technique
introduced in NSM for good concurrent bandwidth. The first problem here is
that when loading a block for one chunk, a potentially large amount of data
from a neighboring chunk can be loaded at the same time. In NSM this does

178 Chapter 7: Cooperative scans

h

Logical level NSM DSM

query 1

query 2

overlap

values

a

I/O units

b c d ge f h a b c d ge f h a b c d ge f

Figure 7.12: Data overlapping in NSM and DSM

not occur, as chunks and blocks are equivalent. In DSM, however, ABM needs
to take special care to minimize situations in which this extra data is evicted
before it could be used by a different chunk. Also, keeping a full physical block
in memory to provide it to another query in the near future may result in a
sub-optimal buffer usage. The second issue, buffer-space demand, is a general
problem for DSM I/O scheduling. In NSM, for Q concurrent queries the system
requires memory for 2∗Q (factor 2 because of prefetching) blocks, which is usu-
ally acceptable, e.g. 512MB for 16 concurrent scans using 16MB chunks/blocks.
In DSM, however, to process a set of rows, data from multiple columns needs
to be delivered. While some optimizations are possible, e.g. performing selec-
tions on some columns early [HLAM06], in general all the columns used by a
query need to be loaded before the processing starts. As a result, a separate
block is needed for every column used in a query, increasing the buffer demand
significantly for multi-column scans, e.g. to 4GB for 16 scans reading 8 columns
each. This can be improved (in both models) by analyzing which pages from
blocks are already processed, and re-using them as-soon-as-possible for I/Os for
different queries (with scatter-gather I/O). Both problems demonstrate that in
DSM the performance and resource demand can be significantly improved by
making algorithms page-aware. However, such solutions significantly complicate
the implementation, and our current system currently handles only chunk-level
policies.
The final DSM problem for Cooperative Scans is the reduced data reuse

opportunity between queries. Figure 7.12 shows two queries reading a subset

Section 7.4: Improving DSM scans 179

of a table and their I/O requirements in both NSM and DSM. Comparing the
logical data need to the physical data demand in both models, we see that
the vertical expansion present in DSM is usually significantly smaller than the
horizontal expansion present in NSM. As a result, fewer disk blocks are shared
between the queries, reducing the chance of reusing the same block for different
scans. In NSM, for a block fetched by some query Q1, the probability that
another query Q2, reading T2 tuples, will use it is proportional to T2TT , where TT
is the number of tuples in the entire table. In DSM, we need to take into account
both vertical (as in NSM) and horizontal overlap, reducing this probability to
T2
TT
∗Poverlap(Q1, Q2), where Poverlap(Q1, Q2) is the probability of a column from

Q1 also being used in Q2.

7.4.2 Cooperative Scans in DSM

The DSM implementation of the traditional policies is straightforward. In nor-
mal, the order of I/Os is strictly determined by the query and LRU buffering
is performed on a (chunk,column) level. DSM attach joins a query with most
overlap, where a crude measure of overlap is the number of columns two queries
have in common. A more fine-grained measure would be to get average page-
per-chunk statistics for the columns of a table, and use these as weights when
counting overlapping columns. Just like in NSM, the DSM elevator policy still
enforces a global cursor that sequentially moves through the table. Obviously,
it only loads the union of all columns needed for this position by the active
queries.

The framework for relevance in DSM is similar to that in NSM, with a few
crucial differences, caused by the challenges discussed in the previous section:
avoiding data waste – as discussed, with I/O based on large physical blocks,
it is possible that a block loaded for one logical chunk contains data useful for
neighboring chunks. When the first chunk is freed, this data would be evicted.
To avoid that, the choice of the next chunk for a given query is performed be-
fore the query blocks for a fully available chunk. The already-loaded part of the
chunk is marked as used, which prohibits its eviction.
finding space for a chunk – in DSM it is possible that a subset of columns
in a buffered chunk is not useful for any query. ABM first evicts blocks belonging
to such columns. Then, it starts evicting useful chunks, using the keepRelevance
function to victimize the least relevant chunk. Note that, unlike in NSM, this
eviction process is iterative, since due to different physical chunk sizes, possibly

180 Chapter 7: Cooperative scans

useRelevance(c, qtrigger)
| cols = queryColumns(qtrigger)
| U = |interestedOverlappingQueries(c, cols)|
| Pu = numberCachedPages(c, cols)
| return Pu/U

loadRelevance(c, qtrigger)
| query cols = queryColumns(qtrigger)
| queries = overlappingStarvedQueries(c, query cols)
| cols = columnsUsedInQueries(queries)
| L = |queries|
| Pl = |columnPagesToLoad(c, cols)|
| return L/Pl

keepRelevance(c, qtrigger)
| starved = almostStarvedQueries(c)
| cols = columnsUsedInQueries(starved)
| E = |starved|
| Pe = |cachedColumnPages(c, cols)|
| return E/Pe

Figure 7.13: DSM Relevance Functions

multiple chunks need to be freed.1

column-aware relevance functions – Figure 7.13 shows that the DSM rele-
vance functions need to take into account the two-dimensional nature of column
storage and the varying physical chunk sizes. Like in NSM, useRelevance at-
tempts to use chunks needed by few queries, to make them available for eviction.
However, it also analyzes the size of a chunk, to additionally promote chunks
occupying more buffer space. The loadRelevance function looks at the number
of starved queries that overlap with a triggering query and are interested in a
given chunk. It also estimates the cost of loading a given chunk by computing the
number of cold pages required for all needed columns. The returned score pro-
motes chunks that benefit multiple starved queries, and require a small amount
of I/O. The DSM keepRelevance function promotes keeping chunks that occupy
little space in the buffer pool and are useful for many queries.
column loading order – a final issue in DSM is the order of columns when
loading a chosen chunk. If some queries depend only on a subset of the columns,
it may be beneficial to load that subset first. Our current crude approach is to

1If multiple chunks need to be freed, the dependency between them should be taken into
account, something missed by the greedy iterative approach used here. Choosing the optimal
set of chunks to free is a good example of a knapsack problem surfacing in DSM I/O scheduling.

Section 7.4: Improving DSM scans 181

Normal Attach Elevator Relevance
System statistics

avg stream time 536.18 338.24 352.35 264.82
avg norm. lat. 7.05 4.77 15.11 2.96
total time 805 621 562 515
CPU use 61 % 77 % 82 % 92 %
I/O requests 6490 4413 2297 3639

Query statistics
query cold avg. avg. avg. avg.

latency latency latency latency latency
F-01 0.92 6.12 4.68 26.95 3.17
F-10 2.99 21.01 16.39 45.64 10.19
F-50 15.88 191.12 108.53 141.84 64.97
F-100 26.53 364.33 198.86 145.81 90.16
S-01 1.90 6.92 5.07 54.75 3.33
S-10 8.15 47.93 37.96 103.12 21.93
S-50 36.28 148.19 126.20 134.19 88.19
S-100 71.25 346.65 259.14 184.60 231.38

Table 7.2: Column-storage experiments with a set of FAST and SLOW queries
scanning 1%, 10%, 50% and 100% of a table (16 streams of 4 random queries,
all times in seconds)

just load column chunks in increasing size (in terms of pages), which maximizes
the number of “early” available columns, allowing queries to be awoken earlier.
Another approach could prioritize columns that faster satisfy some query needs.
Finally, if data is compressed on disk but kept decompressed in the buffer man-
ager (like in SybaseIQ), it might be valuable to first load compressed columns,
so their decompression is interleaved with loading the remaining ones.

7.4.3 DSM results

Table 7.2 presents DSM results for an experiment similar to the one presented
in Table 7.1 for NSM/PAX. One difference is that we used a faster “slow” query,
since, due to the faster scanning achieved by DSM, with the original query the
system was completely CPU bound, making it impossible to demonstrate per-
formance differences of different policies with these queries. Also, we increased
the lineitem size from factor 10 (60Mtuples) to 40 (240Mtuples), to com-
pensate for the lower data-volume demand of DSM. Finally, since our current
implementation requires reserved memory for each active chunk, and there are

182 Chapter 7: Cooperative scans

Queries Normal Relevance
(used number query latency number query latency
columns) of I/Os avg. stddev of I/Os avg. stddev

Non-overlapping queries
ABC 5094 100.58 20.71 1560 24.27 5.24
ABC,DEF 6215 121.83 24.83 3254 57.87 14.54

Partially-overlapping queries
ABC 5094 100.58 20.71 1560 24.27 5.24
ABC,BCD 5447 107.86 21.28 2258 39.69 10.34
ABC,BCD,CDE 5791 113.26 27.39 2918 52.94 14.02
ABC,BCD,CDE 6313 125.14 22.35 3299 60.20 12.50
DEF

Table 7.3: Performance of DSM queries when scanning different sets of columns
of a synthetic table

more chunks in DSM (one for each column), we had to increase the buffer size
from 1GB to 1.5GB to allow concurrent execution of 16 queries.
The results confirm that also in DSM relevance is clearly the best schedul-

ing approach. All policies behave as observed earlier in NSM: normal performs
bad in both dimensions, while attach and elevator both improve the system
throughput, with the former additionally improving query latencies. The rele-
vance policy beats the competitors in both dimensions, only losing slightly to
elevator on the slow full-table scan.

7.4.3.1 Overlap-ratio experiments

While so-far we have seen another success story of relevance, in DSM there is
the caveat of column overlap. If queries have a significant percentage of overlap-
ping columns, DSM provides good I/O reuse opportunities, which are then best
exploited by relevance. In the following experiment, however, we investigate to
what extent decreasing column overlap affects performance. We have performed
a synthetic benchmark, where we run various queries against a 200M-tuple re-
lation, consisting of 10 attributes (called A to J), each 8 bytes wide. The buffer
size is 1GB. We use 16 streams of 4 queries that scan 3 adjacent columns from
the table. In different runs, corresponding queries read the same 40% subset of
the relation, but may use different columns. The total number of chunks for the
entire run is 7680 chunks.
The first part of Table 7.3 shows the performance changes when query types

Section 7.5: Cooperative Scans in a RDBMS 183

do not have any overlapping columns. With 16 parallel queries and one resp.
two query types, we thus have 16 resp. 8 queries of the same type (but with
randomly chosen 40% scan ranges). Due to the rather large size of the scans,
normal can still re-use quite a few blocks in case of a single query type (around
33% of the 7680 chunks), but about half of that is lost when two column-disjunct
queries are used. As for relevance, very good re-use is achieved using a single
query type, with relevance beating normal by a factor 4. With two query types,
the average query latency doubles, which corresponds to the 0.5 reduction of
sharing opportunities, but relevance still beats normal by a factor two there.
With non-overlapping query families, numbers are somewhat harder to un-

derstand, but the general trend is that I/O reuse drops with decreasing column
overlap. As relevance normally benefits more from bandwidth sharing, it is hit
more, relative to normal, but we still observe relevance beating normal by a
factor two in these situations. These results confirm that the benefit of the rel-
evance policy does depend on the columns used in the queries. This knowledge
can be exploited by applications. For example, when looking for correlations in
data mining, assuming thousands of queries are issued in the process and but
only few are executing at the same time, it may be beneficial to schedule the
queries such that the column overlap is maximized.

7.5 Cooperative Scans in a RDBMS

In this section we outline how existing DBMSs can be extended with Cooperative
Scans, focusing on the ABM implementation and adapting order-aware operators
to out-of-order data delivery.

7.5.1 ABM implementation

The most practical and least intrusive way to integrate Cooperative Scans into
an existing RDBMS is to put ABM on top of the standard buffer manager. We
successfully created an early ABM prototype in PostgreSQL [ZBK04]. Here, to
load a chunk, ABM requests a range of data from the underlying buffer manager.
This request is fulfilled by reading multiple pages occupying random positions in
the standard buffer pool. These pages, locked by ABM after reading, are provided
to all interested CScan operators and finally are freed when ABM decides to evict
them. An additional benefit is that ABM can dynamically adjust its buffer size in
situations when the system-wide load changes , e.g. when the number of active
CScan operators decreases. Also, if the buffer manager provides an appropriate

184 Chapter 7: Cooperative scans

interface, it is possible to detect which pages of a chunk are already buffered
and promote partially-loaded chunks in ABM.
Though the original focus of CScan was improving the scans of a single table,

a production-quality implementation of CScan should be able to keep track of
multiple tables, keeping separate statistics and meta-data for each (large) table
in use. As our approach targets I/O bound situations, for small tables CScan
should simply fall back on Scan.
Finally, ABM only improves performance on clustered scans. For unclustered

data access, CScan should not be used. Still, ABM can exploit the queue of out-
standing page requests generated by the normal buffer manager to prioritize
chunks more as they intersect more with this queue. When the chooseChunk-
ToLoad() decides to load a chunk, any intersecting individual page requests
should be removed from the normal page queue.

7.5.2 Order-aware operators

In this section, we discuss the impact of the out-of-order delivery of tuples by
CScan on query processing. In its purest form, the relational algebra is order-
unaware, and this holds true for many physical operators (e.g. nested-loop join,
scan-select, hash-based join and aggregation, etc.). However, query optimizers
make a clear distinction between order-aware and unaware physical operators
(e.g. by enumerating sub-plans that preserve certain “interesting orders”). The
two major order-aware physical operators are ordered aggregation and merge-
join.

Ordered aggregation exploits the key-ordering of the input for efficient com-
putation of per-key aggregate results that can be immediately passed to the
parent once a key change is detected. With Cooperative Scans, ordered aggre-
gation can still exploit the fact that the per-chunk data is internally sorted. We
pass the chunk number of a tuple as a virtual column via the Volcano-like oper-
ator interface of MonetDB/X100. When processing a given chunk, the operator
performs inside-chunk ordered aggregation, passing on all the results except for
the first and the last one in the chunk, as these aggregates might depend on
the data from other chunks. These border values are stored on a side, waiting
for the remaining tuples that need to be included in that computation. A key
observation is that chunks are large, so not huge in number, and the number of
boundary values to keep track of is limited by the number of chunks. Looking
at the chunk sequence, it is also possible to detect the “ready” boundary values
early and pass them to the parent immediately, which is especially useful with

Section 7.5: Cooperative Scans in a RDBMS 185

multiple consecutive chunks delivered.

Merge Join can be handled in the attach and elevator policies as follows [HSA05]:
at a moment when a scan starts on one table, a matching position in the other
table is found, and join processes until the end of table. Then, the scan on both
tables starts from the beginning, processing until the original position.
Since relevance’s data delivery pattern is much more dynamic, a more com-

plex approach is necessary. In case the inner table fits main memory, it is enough
to switch to a proper position in this table (using search or index lookup) when-
ever a chunk in the outer table changes. Similarly, with a multi-level storage
hierarchy, including both fast but small solid state memory and large but slow
disks, similar strategy can be applied if the inner table fits on a flash drive and
the cost of finding a matching position in it is small.
Situation complicates when both tables need to be scanned from disk. After

loading data from the outer table, it is necessary to enforce loading a matching
range in the inner table, and synchronize their delivery to the reading operators.
Since a chunk in the inner table can be useful for multiple chunks in the outer
relation, the loadRelevance function for the outer table should be extended to
take into account the availability of matching data in the inner table, optimiz-
ing its reuse. Clearly, this approach significantly complicates implementation,
especially in multi-join scenarios, suggesting using traditional Scan operators in
such cases.
There is one special, yet valuable, scenario where CScan can be applied on

both sides of a merge join. MonetDB/X100 uses join indices for foreign-key
relationships. For example, the join index over orderkey between lineitem
and order in TPC-H adds the physical row-id #order as an invisible column
to lineitem. By storing the lineitem table sorted on #order (and order itself
sorted on orderdate), we get multi-table clustering, where tuples are stored in
an order corresponding to the foreign key join relationship.
Within MonetDB/X100, there is ongoing work on Cooperative Merge Join

(CMJ) that works on top of such clustered tables, fully accepting out-of order
data as it is delivered by CScan. The key observation is that multi-table clustered
DSM tables can be regarded as a single, joined, DSM table on the level of ABM,
as it already has to deal with the fact that in DSM columns have widely varying
data densities and chunk boundaries never coincide with page boundaries. Thus,
ABM views the physical representation of the clustered order and lineitem table
as the physical representation of the already joined result, even though the data
density in the order columns is on average six times lower than in lineitem.
Using the freedom to choose the boundaries of logical chunks at will, it makes

186 Chapter 7: Cooperative scans

sure that matching tuples from order and lineitem always belong to the same
chunk. Thus, a single CScan operator can deliver matching column data from
both order and lineitem tables and the special CMJ merge-join reconstructs
joined tuples from these.

7.6 Related work

Disk scheduling policies are a topic that originated from operating systems re-
search [TP72]. Various such policies have been proposed, including First Come
First Served, Shortest Seek Time First, SCAN, LOOK and many others. Most
relevant for our work is SCAN, also known as the “Elevator” algorithm. In this
approach, a disk head performs a continuous movement across all the relevant
cylinders, servicing requests it finds on its way. Other related operating system
work is in the area of virtual memory and file system paging policies, for which
generally LRU schemes are used. Note that these solutions are mostly targeted
at optimizing the disk seek time with multiple random disk accesses. In case of
large sequential scans, these policies will offer very little improvement.
Previous research in DBMS buffer management [CD85, SS86, CR93, FNS91]

usually considered large table scans trivial and suggested a simple LRU or MRU
policy, which minimized the possibility of inter-query data reuse. To overcome
this problem, the concept of circular-scans has been introduced in some commer-
cial DBMSs, e.g. Teradata, RedBrick and Microsoft SQLServer [NCR02, Col98,
Coo01]. A variation of this idea was suggested in [KSR01], where authors issue
a massive number of concurrent request to the buffer manager and serve them
in a circular fashion. It was also discussed as a part of the Q-Pipe architec-
ture [HSA05]. All these approaches follow either the attach or elevator policies,
which in Section 7.3 have been shown as inferior to the new proposed relevance
policy. Recently, a modified version of the attach policy has been suggested for
table scans [LBM+07] and index scans [LBMW07] it the IBM DB2 system. This
solution introduces slight improvements to attach, by adding explicit group con-
trol and allowing a limited throttling of faster queries, but still suffers from the
main attach problems.
Most previous work regarding table scans has focused on row storage only,

ignoring scans over column-oriented data. A recent paper by Harizopoulos et
al. [HLAM06] provides a detailed analysis of the I/O behavior differences be-
tween DSM and NSM. However, this paper concentrates on single-query sce-
narios and does not analyze the problem of the DSM buffer demand, which we
found important, especially in a concurrent environment.

Section 7.6: Related work 187

Scheduling is also important in real-time database systems [KGM95], where
transactions need to be scheduled to meet certain time critical constraints. This
involves making scheduling decisions based on the availability of certain re-
sources, such as CPU, I/O, and buffer-manager space. Our work differs from
such scheduling, in that we do not treat buffer-manager space as a resource
being competed for, but rather schedule in a way to maximize sharing opportu-
nities.
In multi-query optimization [SSB00], the optimizer identifies common work

units in concurrent queries and either materializes them for later use [MPK00]
or creates pipelined plans where operators in multiple queries directly interact
with each other [DSRS01]. The concept of shared scans is often a base for such
query plans [DSRS01]. When compared with our work, multi-query optimization
is performed on a higher level, namely on the level of query processing operators
that may be shared. Such operator sharing is even the cornerstone of the Q-Pipe
architecture [HSA05].
A related approach is multi-query execution (rather than optimization). The

NonStop SQL/MX server [Cle99] introduced a special SQL construct, named
‘TRANSPOSE’, that allows explicitly specifying multiple selection conditions
and multiple aggregate computations in a single SQL query, which is executed
internally as a single scan.
Ideas close to our algorithms have been explored in research related to us-

ing tertiary storage. Sarawagi and Stonebraker [SS96] present a solution that
reorders query execution to maximize data sharing among the queries. Yu and
DeWitt [YD97] propose pre-executing a query to first determine the exact ac-
cess pattern of a query and then exploit this knowledge to optimize the order
of reads from a storage facility. Moreover, they use query batching to even fur-
ther improve performance in a multi-query environment. Shoshani et al. [Sho99]
explore the multi-dimensional index structure to determine files interesting for
queries and apply a simple file weighting based on the number of queries in-
terested in it. This is a special-purpose system, while we attempt to integrate
Cooperative Scans in (compressed column) database storage and query process-
ing architectures.
Ramamurthy and DeWitt recently proposed to use the actual buffer-pool

content in the query optimizer for access path selection [RD05]. This idea can be
extended for Cooperative Scans, where the optimizer could adjust the estimated
scan cost looking at the currently running queries.
All research discussed so far focused on improving disk data delivery per-

formance. Modern multi-core CPUs with complex memory hierarchies result in
RAM bandwidth becoming a bottleneck, as discussed e.g. in Section 6.2.9. As a

188 Chapter 7: Cooperative scans

result, data-sharing algorithms are also applied on the CPU level. For example,
in [QRR+08] queries running on different cores that share some level of cache
reuse the data stored there, minimizing main-memory traffic.

7.7 Conclusions and future work

This chapter motivated and described the Cooperative Scans framework that
significantly enhances existing I/O scheduling policies for query loads that per-
form concurrent (clustered index) scans. One area where this is highly relevant
is data warehousing, but (index) scan-intensive loads are found in many more
application areas, such as scientific databases, search, and data mining.
The Active Buffer Manager (ABM) coordinates the activities of multiple Coop-

erative Scan (CScan) queries in order to maximize I/O bandwidth reuse, while
ensuring good query latency. We compared a number of existing scheduling
policies (LRU, attach, elevator), and have shown that our new relevance policy
outperforms them consistently.
We have shown the benefit of our approach in experiments using both row-

wise storage (NSM or PAX) and column-wise storage (DSM). While column-
stores have gained a lot of interest in recent years, we are not aware of significant
previous work on I/O scheduling for column stores. One of our findings here is
that DSM scheduling is much more complex, and efficient DSM I/O requires
considerably more buffer space than NSM. Our new policy performs progres-
sively better when buffer space is scarce, which plays to its advantage in DSM.
We described how ABM can be implemented on top of a classical buffer

manager and also discussed order-aware query processing despite out-of-order
data delivery, which is a topic of ongoing research.

Chapter 8

Conclusions

The research presented in this thesis, summarized in Section 8.1, introduces a
number of techniques that improve the query execution efficiency in databases
by taking advantage of modern hardware trends. The resulting MonetDB/X100
system, used to validate our ideas, achieves high performance in database pro-
cessing, as demonstrated with the TPC-H benchmarks presented throughout
this thesis and summarized in Section 8.2.1. Additionally, thanks to its effi-
ciency, it makes it possible for database technology to be successfully applied in
other areas, as discussed in Section 8.2.2. Finally, many ideas presented in this
thesis lead to interesting research problems, discussed in Section 8.3.

8.1 Contributions

This thesis introduces a number of techniques in the field of data-intensive
query processing, focusing on in-memory query execution and processing of
disk-resident data. The proposed methods are presented in the context of a
balanced database architecture.

8.1.1 Improving in-memory query processing

The major contribution in this area is the vectorized execution model intro-
duced in Section 4.2. This model combines the best features of the previously
proposed tuple-at-a-time and column-at-a-time models, taking the scalability
from the former, and the raw processing performance from the latter. This high

189

190 Chapter 8: Conclusions

performance is achieved by spending most of the CPU time in data processing
primitives designed and implemented to execute efficiently on modern super-
scalar CPUs. Additionally, in-cache execution allows good use of hierarchical
memory structures. As a result, the proposed model has been shown to pro-
vide performance often one or two orders of magnitude better than the existing
solutions.
Research on the efficient implementation of the vectorized execution model,

presented in Chapter 5, resulted in a number of algorithms and implementation
methods beneficial to a wide range of applications. First, a number of algo-
rithm design and implementation techniques for the vectorized model has been
presented. These techniques demonstrate how to decompose algorithms into a
sequence of vectorized steps and how to efficiently implement primitives per-
forming these steps. Additionally, we discuss how different data organization
models have different performance characteristics for different processing tasks,
and introduce a novel idea of dynamic data reorganization inside the query
processing pipeline to better exploit these properties. These techniques are syn-
thesized in a fully vectorized implementation of a generic hash-join, which is
demonstrated to achieve performance comparable with a hand-written, special-
ized implementation. A proposed technique of cache-efficient best-effort parti-
tioning additionally allows applying algorithms using hash-tables to data sizes
exceeding the capacity of the CPU cache. Finally, we propose new implemen-
tations of a set of important, but less-frequently researched, data processing
algorithms, such as exception handling, string processing and binary search,
showing how the vectorized versions can provide significant performance im-
provement over traditional approaches.

8.1.2 Improving processing of disk-resident data

For disk-resident data, this thesis proposes to remove the need for random disk
accesses by following the idea of scan-only query processing. In this way large
volumes of data can be efficiently provided to the query execution layer. To
reduce the impact of the increasing imbalance between the CPU and disk per-
formance, this thesis additionally introduces two techniques that allow better
exploitation of the available disk bandwidth.
The first technique follows the idea of using data compression to reduce the

volume of data that needs to be fetched from disk. This thesis introduces a set of
new compression algorithms that are focused on efficiently exploiting the prop-
erties of modern CPUs to achieve high compression and decompression speeds.
Additionally, we propose keeping the data compressed in the buffer manager and

Section 8.1: Contributions 191

decompressing it on the boundary between RAM and the CPU cache. This tech-
nique allows caching more data, avoids in-memory materialization, and can even
improve the performance of the memory bandwidth on multi-core machines.
The second major contribution is the research on improving the performance

of concurrently running scan queries. Within the general framework of cooper-
ative scans we investigate the properties of various scheduling algorithms in
databases. We also introduce a new relevance policy that dynamically schedules
I/O requests by analyzing the entire system activity and, thanks to dynamic
adaptation to changing conditions, achieves significant performance improve-
ments for a large class of queries. Finally, this work discusses why efficient
scanning is more complex in the DSM world, with queries scanning not only a
subset of rows but also a subset of columns.

8.1.3 Balanced database system architecture

Performance benefits of the vectorized execution model can only be observed if
the data delivery layer can match its processing speed. Similarly, improvements
to the I/O infrastructure will not be visible if the performance of the processing
layer is low and the system is not I/O bound.
The design of the MonetDB/X100 architecture is based around the idea of

different optimizations cooperating to achieve high performance. An example of
this approach is the compression layer: it decompresses data per-vector saving
it into the CPU cache, perfectly matching the vectorized execution model.
The importance of balancing both processing and storage optimizations is

presented with an experiment in Figure 8.1. Here, TPC-H Query 6 (1GB scale
factor) is executed on a 2.8GHz Intel Nehalem system with an efficient disk
subsystem. We compare the performance using different vector sizes, I/O buffer
sizes, and two queries: one operating on raw data (ca. 160 MB) and one operat-
ing on compressed data (ca. 36 MB)1. With fully buffered data the overhead of
decompression adds a small, but visible overhead (left plot). However, compres-
sion provides two benefits. First, since the data volume is reduced, a smaller
buffer size is required to have data fully cached (middle plot). Secondly, even if
the data needs to be fully read from the disk, the I/O overhead is significantly
smaller for the compressed data (right plot). In all cases, small vector sizes
cause the execution to be dominated by the interpretation overhead, making
the impact of data format and buffer size negligible. This experiment demon-
strates that compression can scale vectorized execution to larger data sets, and
1both queries perform a fully sequential scan, hence do not benefit from the partially

buffered data

192 Chapter 8: Conclusions

 100

 1000

 10000

 1 4 16 64 256 1K 4K

E
xe

cu
tio

n
tim

e
(m

se
c)

Vector size (tuples)

1GB buffer
(hot)

raw data
compressed data

 1 4 16 64 256 1K 4K

Vector size (tuples)

64MB buffer
(raw cold, compressed hot)

raw data
compressed data

 1 4 16 64 256 1K 4K

Vector size (tuples)

32MB buffer
(cold)

raw data
compressed data

Figure 8.1: Performance of the TPC-H Query 6 with raw and compressed data
using different I/O buffer sizes

at the same time high-performance execution is needed to make the benefit of
compression visible.

8.2 Evaluation

The techniques used in the MonetDB/X100 system allowed it to achieve very
high efficiency in data-analysis tasks, as demonstrated with the TPC-H results
that are summarized in Section 8.2.1. This performance, often close to hand-
written solutions, has led to the investigation if the proposed architecture can
also be applied in other fields where databases were traditionally not used due to
their poor performance. Section 8.2.2 discusses how MonetDB/X100 successfully
competed with specialized solutions in one of such areas: large-scale information
retrieval.

8.2.1 TPC-H performance

TPC-H is currently the standard benchmark suite for decision support sys-
tems [Tra06]. It simulates systems that process large volumes of data and exe-
cute highly complex queries to answer critical business questions. This is a typ-
ical example of data-intensive problems. Since research presented in this thesis
focuses on improving database performance in such applications, TPC-H has

Section 8.2: Evaluation 193

TPC-H MonetDB/X100 IBM DB2 UDB 8.1
query Itanium2 AMD Opteron 8 x P4 Xeon

1.3GHz 2GHz, 4GB RAM 2.8GHz
12GB RAM 4 disks 16GB RAM
in-memory raw data compressed 142 disks

01 30.25 307.2 69.6 111.9
03 3.77 35.0 11.3 15.1
04 1.15 18.2 2.4 12.5
05 11.02 54.3 15.3 84.0
06 1.44 48.2 10.7 17.1
07 29.47 119.8 72.0 86.5
11 1.66 27.0 14.6 19.5
14 2.64 23.7 12.2 10.9
15 14.36 44.9 22.4 21.6
18 10.37 181.9 50.6 318.2
21 17.61 197.6 46.6 374.9

Table 8.1: TPC-H SF-100 results on MonetDB/X100: memory-resident bench-
marks (from [BZN05]), disk-resident benchmarks (from [ZHNB06]). DB2 results
for comparison (2006 results from www.tpc.org)

been used throughout this thesis as a leading example evaluating the proposed
techniques.
Table 8.1 demonstrates the performance achieved by MonetDB/X100 on a

subset of the TPC-H benchmark for both memory- and disk-resident data. It also
present the results of the IBM DB2 benchmark running on a significantly more
powerful hardware configuration. While these systems are not fully comparable,
as MonetDB/X100 at the moment of these benchmarks did not provide all
the capabilities required by TPC-H and the query plans were hand-crafted,
the results indicate that MonetDB/X100 performs significantly better in terms
of the absolute performance. This performance advantage becomes even more
visible when taking into account the difference in the available processing and
storage power.

8.2.2 Information retrieval with MonetDB/X100

Integration of information retrieval and databases is seen as one of the major
goals of the database community [AY05, CRW05]. Still, these two areas have de-

194 Chapter 8: Conclusions

veloped independently from each other, even though many IR tasks can be per-
formed using relational systems [GFHR97, GBS04]. One of the reasons for not
applying database technology to information retrieval is the poor performance
of standard database solutions. For example, only one attempt has been made to
participate in the Terabyte TREC benchmark using a database system [CCS04],
and the performance of the presented solution was significantly worse than that
of specialized IR systems. Since one of the goals of MonetDB/X100 was to bridge
the gap between general-purpose database technology and task-specialized ap-
plications, we decided to evaluate the performance of our system in this area.
This section provides only an overview of the results, more details can be found
in [HZdVB06, CHZ+08, HZdVB07].

8.2.2.1 Expressing IR tasks as relational queries

For our experiments, we investigated a set of techniques applied in keyword
search, including Boolean OR and AND queries as well as the popular Okapi
BM25 formula [RWB98]. In these models, data is typically stored in inverted
files [ZM06], where for each term a sorted list of documents with this term
is stored, either containing all individual occurrences, or simply a number of
occurrences within the document. For this storage model, a keyword search
can be expressed as a combination of these lists with some arithmetic on top,
typically followed by Top-N computation. This general structure can be applied
to both Boolean queries as well as to BM25. Interestingly, the task of combining
inverted lists is the exact equivalent of performing a sequence of merge-join
operations (inner or outer) on the matching data in a database. This allows easy
mapping of these query models onto relational queries, as presented in [CHZ+08,
HZdVB06, HZdVB07].

8.2.2.2 Performance on Terabyte TREC benchmark

A simple mapping of IR tasks onto MonetdDB/X100 queries provides perfor-
mance already in the same ballpark as specialized systems [HZdVB07]. How-
ever, many of the optimization techniques used in IR can also be applied in
a relational system. For example, the high-performance data compression al-
gorithms of MonetDB/X100 provide a significant performance benefit when
querying disk-resident data, and allow fitting more data in RAM, reducing the
number of machines needed to store the entire inverted index in a distributed set-
ting [HZdVB07]. Also, IR techniques such as two-pass querying [BCH+03] and
score materialization are easily expressible in a relational system [HZdVB07].

Section 8.2: Evaluation 195

Run Index p@20 CPUs Time per

size (GB) query (ms)

Indri 100 0.5610 1 1724
Wumpus 14 0.5310 1 91
Zettair 44 0.4770 1 390
MonetDB/X100 9 0.5470 1 117

Table 8.2: MonetDB/X100 performance compared to custom IR systems on a
single-CPU disk-resident Terabyte TREC data (from [CHZ+08])

The discussed techniques allow MonetDB/X100 to achieve performance di-
rectly comparable with the specialized IR systems, as demonstrated with the
Terabyte-TREC results presented in Table 8.2. In this benchmark, a collection
of 25 millions documents with a total size of 426 GB is queried using sim-
ple keyword-search. System efficiency (speed) is measured by executing 50,000
queries, while effectiveness (accuracy) is evaluated by early precision (p@20) on
a subset of 50 preselected queries for which relevance judgments are available.
Systems competing in this benchmark are typically specialized IR solutions opti-
mized for executing this type of queries. In our approach, search requests are ex-
pressed fully as relational queries and executed on MonetDB/X100 without any
specific IR optimizations. The results show that, surprisingly, MonetDB/X100
easily competes with the best participating systems, achieving high efficiency
without hurting the effectiveness. Additional general-purpose optimizations, e.g.
using PAX storage2 to reduce random disk access cost, would make this com-
parison even more favorable for MonetDB/X100.
More detailed experiments presented in [CHZ+08], demonstrate that our ap-

proach is also highly flexible. Thanks to its efficient compression, MonetDB/X100
reduces the dataset size from 29GB to 9GB, making it memory-resident on a
12GB machine. This removes the need for I/O and brings the average execution
time down to 21ms. Additionally, remote query execution allows easy setup of
distributed experiments, where MonetDB/X100 achieves amortized query time
of just 3.2ms (using 8 nodes, each with 2GB of RAM).
These results demonstrate that MonetDB/X100 can be successfully applied

not only to database tasks, but to a wider class of problems where large volumes
of data need to be processed fast. In the future, we hope to investigate other
such areas, including scientific data processing and data mining.

2PAX storage was not implemented in MonetDB/X100 at the time of running these ex-
periments

196 Chapter 8: Conclusions

8.3 Future research directions

The material discussed in this thesis provides valuable insights in many areas
of query execution on modern hardware. Still, the dynamic nature of computer
evolution, as well as the wide scope of discussed areas, lead to a number inter-
esting problems for future research.

8.3.1 Improving the vectorized execution model

In this thesis the vectorized execution model has been shown to have good
performance characteristics. Still, multiple improvements are possible.
One of the crucial parameters of the vectorized execution model is the vector

size, discussed in Section 4.2.2.2. Currently, it is fixed for the entire query. How-
ever, with blocking operators inside the query tree, the query plan is effectively
decomposed into semi-independent processing stages with potentially different
characteristics. In such a scenario, the vector sizes can be different for various
operators, to better balance the available cache size and query complexity.
In Section 5.2.2 we discussed how the storage model during query execu-

tion influences performance. While currently only DSM and NSM models were
discussed, it is possible to generalize these models to a setup where different
attributes are clustered into multiple groups, each represented as DSM (single-
attribute groups) or NSM (multi-column groups), as discussed in [HP03]. In
some situations, this can provide performance improvements. Furthermore, the
research presented in [ZNB08] demonstrates that in-query on-the-fly data con-
version can provide extra performance benefits. However, such a flexible data
organization introduces an additional dimension to the query optimizer, espe-
cially with dynamic data reorganization. Also, efficient storage of variable-width
data types, as well as efficient handling of selection (and other types of tuple-
indirection) in this model need to be researched.

8.3.2 Storage-layer improvements

Light-weight compression methods discussed in Chapter 6 can significantly re-
duce the I/O bandwidth hunger. Still, the presented set of algorithms is rela-
tively limited, as it does not allow efficient compression and fast decompression
of many data sets. For example, similarly performing algorithms for strings or
floating-point numbers need to be researched. Additionally, with the increased
number of possible compression schemes (and their parameters), more efficient
and flexible automatic compression algorithms need to be investigated.

Section 8.3: Future research directions 197

The cooperative-scans technique presented in Chapter 7 currently focuses
on optimizing single-table scans, as found in a typical star schema. Extending
this concept to a multi-table scenario, especially in a situation when individual
queries scan multiple tables, is an interesting challenge. Similarly, applying this
technique to complex merge-join scenarios poses a problem. Finally, with the
continuously increasing imbalance between memory and cache speeds, it is pos-
sible that some of the discussed concepts can be applied to coordinate memory
accesses by concurrently running queries.
Another research direction is related to the rapidly increasing popularity

of solid-state storage (see Section 2.3.3). Since this form of storage has sig-
nificantly different parameters, new algorithms to access the data need to be
devised [Ros08, SHWG08].
The final topic currently being researched in the storage layer of Mon-

etDB/X100 are efficient updates for analytical applications. Since data organiza-
tion for such scenarios (clustering, DSM storage, compression) is often different
than for transaction processing, new techniques that allow efficient updating of
such structures need to be investigated.

8.3.3 Parallel execution

The vectorized execution model provides interesting opportunities for parallel
execution. With parallelism implemented e.g. with exchange operators [Gra90],
the larger size of the data transfer unit leads to less overhead of the inter-process
communication. Additionally, vertical fragmentation minimizes the volume of
RAM-to-CPU data transfer, reducing the problem of insufficient memory band-
width on multi-core machines.
A large processing unit in vectorized processing leads to the idea of paralleliz-

ing on the level of a single data-processing primitive, similarly to the horizontal
parallelism for relational operators. With large L2 and L3 caches, holding tens
of thousands of values, the overhead of synchronization might be amortized well
and this approach might provide an efficient solution with relatively limited
system changes.

8.3.4 Alternative hardware platforms

Previous research [HNZB07] demonstrated that the vectorized execution model
is a good foundation for database processing kernels on the hybrid STI Cell
processor. Interestingly, a lot of emerging computing architectures share some
characteristics with Cell. SIMD-like processing units constitute a consistently

198 Chapter 8: Conclusions

growing fraction of the entire system computing power. For example, for many
tasks modern GPUs easily provide better performance than price-comparable
general purpose CPUs. Multiple processing cores already are a mainstream so-
lution, and the number of cores in future generations of CPUs will probably
grow [HBK06]. In some architectures, e.g. GPUs, parallelism is an inherent
property of the computing units. Also, the heterogeneity of the computing units
is increasing, with systems consisting of multiple types of cooperating devices
(CPUs, GPUs etc), potentially also internally heterogeneous (e.g. Cell). Finally,
the hard restrictions on code and data size, as well as explicit management of
both, appear in many new architectures. We believe that the vectorized model
provides multiple opportunities to address these issues, and can be a good foun-
dation for developing data processing kernels on these new architectures.

Bibliography

[AC76] F. E. Allen and J. Cocke. A program data flow analysis procedure.
Commun. ACM, 19(3):137, 1976.

[ACJ+07] Mani Azimi, Naveen Cherukuri, D. N. Jayasimha, Akhilesh Ku-
mar, Partha Kundu, Seungjoon Park, Ioannis Schoinas, and
Aniruddha S. Vaidya. Integration Challenges and Tradeoffs for
Tera-scale Architectures. Intel Technology Journal, 11(3):173–184,
August 2007. Special issue on Tera-scale Computing.

[AD07] Sunil Agarwal and Hermann Daeubler. Reducing Database Size by
Using Vardecimal Storage Format. Microsoft, 2007.

[ADHS01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and M. Sk-
ounakis. Weaving Relations for Cache Performance. In Proc.
VLDB, Rome, Italy, 2001.

[ADHW99] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. DBMSs on a Modern Processor: Where Does Time Go? In
Proc. VLDB, Edinburgh, 1999.

[Adv05] Advanced Micro Devices Inc. Software Optimization Guide for
AMD64 Processors, September 2005.

[Aga96] Ramesh C. Agarwal. A Super Scalar Sort Algorithm for RISC
Processors. In Proc. SIGMOD, Montreal, Canada, 1996.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adap-
tive query processing. In Proc. SIGMOD, Dallas, USA, 2000.

[Ail05] Anastassia Ailamaki. Database architectures for new hardware.
In Proc. ICDE, Tokyo, Japan, 2005.

199

200 BIBLIOGRAPHY

[AM05] Vo Ngoc Anh and Alistair Moffat. Inverted index compression
using word-aligned binary codes. Information Retrieval, 8(1):151–
166, 2005.

[AMDM07] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R.
Madden. Materialization Strategies in a Column-Oriented DBMS.
In Proc. ICDE, 2007.

[AMF06] Daniel Abadi, Sam Madden, and Miguel Ferreira. Integrating
Compression and Execution in Column-Oriented Database Sys-
tems. In Proc. SIGMOD, 2006.

[App06] Applied Micro Circuits Corporation. 3ware 9650SE Datasheet,
2006.

[AvdBF+92] P. Apers, C. van den Berg, J. Flokstra, P. Grefen, M. Kersten, and
A. Wilschut. PRISMA/DB: A Parallel Main Memory Relational
DBMS. IEEE Transactions on Knowledge and Data Engineering,
4(6):541–554, December 1992.

[AY05] S. Amer-Yahia. Report on the DB/IR Panel at Sigmod 2005.
SIGMOD Record, 34(4), 2005.

[Bar96] Dirk Bartels. ODMG 93 - The Emerging Object Database Stan-
dard. In Proc. ICDE, pages 674–676, New Orleans, LA, USA,
1996.

[BBPV00] Christophe Bobineau, Luc Bouganim, Philippe Pucheral, and
Patrick Valduriez. PicoDMBS: Scaling Down Database Techniques
for the Smartcard. In VLDB, 2000.

[BCH+03] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien.
Efficient query evaluation using a two-level retrieval process. In
Proc. CIKM, 2003.

[Ben99] Jon Bentley. Programming Pearls. ACM Press, 2nd edition, 1999.

[BGB98] Luiz André Barroso, Kourosh Gharachorloo, and Edouard
Bugnion. Memory system characterization of commercial work-
loads. In Proc. International Symposium on Computer Architec-
ture, pages 3–14, Barcelona, Spain, 1998.

BIBLIOGRAPHY 201

[BGvK+06] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Mane-
gold, Jan Rittinger, and Jens Teubner. MonetDB/XQuery: a fast
XQuery processor powered by a relational engine. In Proc. SIG-
MOD, pages 479–490, Chicago, IL, USA, 2006.

[BK99] Peter A. Boncz and Martin L. Kersten. MIL primitives for query-
ing a fragmented world. VLDB Journal, 8(2):101–119, 1999.

[Bla98] Kenneth R. Blackman. IMS celebrates thirty years as an IBM
product. IBM Systems Journal, 37(4), 1998.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten.
Database Architecture Optimized for the New Bottleneck: Mem-
ory Access. In Proc. VLDB, pages 54–65, Edinburgh, 1999.

[Bon02] Peter A. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. Ph.d. thesis, Universiteit van Am-
sterdam, May 2002.

[BS92] C. R. Banger and D. B. Skillicorn. Flat arrays as a categorical data
type. Technical report, Queen’s University, Kingston, Canada,
1992.

[BZN05] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. CIDR, 2005.

[CAB+81] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blas-
gen, James N. Gray, W. Frank King, Bruce G. Lindsay, Raymond
Lorie, James W. Mehl, Thomas G. Price, Franco Putzolu, Patri-
cia Griffiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost. A history and
evaluation of System R. Commun. ACM, 24(10):632–646, 1981.

[CAGM04] Shimin Chen, Anastassia Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving Hash Join Performance through Prefetching.
In Proc. ICDE, Boston, MA, USA, 2004.

[CAGM05] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and
Todd C. Mowry. Inspector joins. In Proc. VLDB, Trondheim,
Norway, 2005.

202 BIBLIOGRAPHY

[CAGM07] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and
Todd C. Mowry. Improving hash join performance through
prefetching. ACM Trans. Database Syst., 32(3):17, 2007.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A struc-
tured English query language. In Proc. SIGFIDET, pages 249–264,
Ann Arbor, Michigan, 1974.

[CB94] Z. Cvetanovic and D. Bhandarkar. Characterization of alpha
AXP performance using TP and SPEC workloads. In Proc. In-
ternational Symposium on Computer Architecture, pages 60–70,
Chicago, IL, USA, 1994.

[CCS04] C. L. A. Clarke, N. Craswell, and I. Soboroff. Overview of the
TREC 2004 Terabyte Track. In Proc. TREC, 2004.

[CD85] H.-T. Chou and D. DeWitt. An Evaluation of Buffer Management
Strategies for Relational Database Systems. In Proc. VLDB, 1985.

[CGK01] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query optimiza-
tion in compressed database systems. SIGMOD Rec., 30(2):271–
282, 2001.

[CGM01] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving
index performance through prefetching. In Proc. SIGMOD, Santa
Barbara, CA, USA, 2001.

[CGMV02] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary
Valentin. Fractal prefetching B+-Trees: optimizing both cache
and disk performance. In Proc. SIGMOD, Madison, USA, 2002.

[CHL99] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-
conscious structure layout. In Proc. SIGPLAN PLDI, Atlanta,
GA, USA, 1999.

[CHZ+08] Roberto Cornacchia, Sandor Heman, Marcin Zukowski, Arjen P.
de Vries, and Peter Boncz. Flexible and Efficient IR using Array
Databases. The VLDB Journal, 17(1):151–168, January 2008.

[CK85] A. Copeland and S. Khoshafian. A Decomposition Storage Model.
In Proc. SIGMOD, 1985.

BIBLIOGRAPHY 203

[Cle99] J. Clear et al. NonStop SQL/MX primitives for knowledge discov-
ery. In Proc. KDD, 1999.

[Col98] L. S. Colby et al. Redbrick vista: Aggregate computation and
management. In Proc. ICDE, 1998.

[Coo01] C. Cook. Database Architecture: The Storage Engine, July 2001.
http://msdn.microsoft.com/library.

[CR93] C.-M. Chen and N. Roussopoulos. Adaptive database buffer allo-
cation using query feedback. In Proc. VLDB, 1993.

[CR07] John Cieslewicz and Kenneth A. Ross. Adaptive Aggregation on
Chip Multiprocessors. In Proc. VLDB, 2007.

[CRG07] John Cieslewicz, Kenneth A. Ross, and Ioannis Giannakakis. Par-
allel Buffers for Chip Multiprocessors. In Proc. SIGMOD DaMoN
Workshop, Beijing, China, 2007.

[CRW05] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB
and IR Technologies: What is the Sound of One Hand Clapping?
In Proc. CIDR, 2005.

[CSS] Charles Clarke, Falk Scholer, and Ian Soboroff. TREC Terabyte
Track. http://www-nlpir.nist.gov/projects/terabyte/.

[CvBdV04] Roberto Cornacchia, Alex van Ballegooij, and Arjen P. de Vries.
A case study on array query optimisation. In Proc. CVDB, Paris,
France, 2004.

[DH98] Karel Driesen and Urs Hölzle. Accurate indirect branch prediction.
SIGARCH Comput. Archit. News, 26(3):167–178, 1998.

[DKO+84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker,
and D. A. Wood. Implementation techniques for main memory
database systems. In Proc. SIGMOD, 1984.

[DSRS01] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan.
Pipelining in multi-query optimization. In Proc. PODS, 2001.

[EKM+04] Andrew Eisenberg, Krishna Kulkarni, Jim Melton, Jan-Eike
Michels, and Fred Zemke. SQL:2003 Has Been Published. SIG-
MOD Record, 33(1):119–126, March 2004.

http://msdn.microsoft.com/library
http://www-nlpir.nist.gov/projects/terabyte/

204 BIBLIOGRAPHY

[FHL+07] Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govin-
daraju, Qiong Luo, and Pedro V. Sander. GPUQP: query co-
processing using graphics processors. In Proc. SIGMOD, Beijing,
China, 2007.

[FKT86] S. Fushimi, M Kitsuregawa, and H. Tanaka. An Overview of
The System Software of A Parallel Relational Database Machine
GRACE. In Proc. VLDB, August 1986.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In Proc. FOCS, 1999.

[Fly72] Michael J. Flynn. Some Computer Organizations and Their Ef-
fectiveness. EEE Trans. Comput, C-21(9):948–960, 1972.

[FNS91] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control for
flexible buffer allocation. In Proc. VLDB, 1991.

[GAHF05] Brian T. Gold, Anastassia Ailamaki, Larry Huston, and Babak
Falsafi. Accelerating Database Operations Using a Network Pro-
cessor. In Proc. SIGMOD DaMoN Workshop, Baltimore, MD,
USA, 2005.

[GBC98] Goetz Graefe, Ross Bunkera, and Shaun Cooper. Hash Joins and
Hash Teams in Microsoft SQL Server. In Proc. VLDB, August
1998.

[GBS04] Torsten Grabs, Klemens Bhoem, and Hans-Jorg Schek. PowerDB-
IR: scalable information retrieval and storage with a cluster of
databases. Knowledge and Information Systems, 6(4):465–505,
2004.

[GBY07] Bugra Gedik, Rajesh Bordawekar, and Philip S. Yu. CellSort: High
Performance Sorting on the Cell Processor. In VLDB, 2007.

[GFHR97] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C. Roberts. In-
tegrating structured data and text: A relational approach. JASIS,
48(2), 1997.

[GG97] Jim Gray and Goetz Graefe. The Five-Minute Rule Ten Years
Later, and Other Computer Storage Rules of Thumb. SIGMOD
Record, 26(4):63–68, 1997.

BIBLIOGRAPHY 205

[GGKM06] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh
Manocha. GPUTeraSort: high performance graphics co-processor
sorting for large database management. In Proc. SIGMOD,
Chicago, IL, USA, 2006.

[GLW+04] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and
Dinesh Manocha. Fast computation of database operations using
graphics processors. In Proc. SIGMOD, Paris, France, 2004.

[GP87] Jim Gray and Gianfranco R. Putzolu. The 5 Minute Rule for Trad-
ing Memory for Disk Accesses and The 10 Byte Rule for Trading
Memory for CPU Time. In Proc. SIGMOD, San Francisco, CA,
USA, 1987.

[Gra90] Goetz Graefe. Encapsulation of parallelism in the volcano query
processing system. In Proc. SIGMOD, pages 102–111, 1990.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–170, 1993.

[Gra94] Goetz Graefe. Volcano - an extensible and parallel query evalua-
tion system. IEEE TKDE, 6(1):120–135, 1994.

[Gra07] Goetz Graefe. The five-minute rule twenty years later, and how
flash memory changes the rules. 2007.

[GRS98] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Com-
pressing relations and indexes. In Proc. ICDE, 1998.

[GS91] G. Graefe and L. D. Shapiro. Data compression and database per-
formance. In Proc. ACM/IEEE-CS Symp. on Applied Computing,
1991.

[GT05] Eran Gal and Sivan Toledo. Algorithms and Data Structures for
Flash Memories. ACM Comput. Surv., 37(2):138–163, 2005.

[GYB07] Bugra Gedik, Philip S. Yu, and Rajesh Bordawekar. Executing
Stream Joins on the Cell Processor. In VLDB, Vienna, Austria,
2007.

[HA04] Stavros Harizopoulos and Anastassia Ailamaki. STEPS towards
Cache-resident Transaction Processing. In Proc. VLDB, Toronto,
Canada, 2004.

206 BIBLIOGRAPHY

[HBK06] Jim Held, Jerry Bautista, and Sean Koehl. From a Few Cores to
Many: A Tera-scale Computing Research Overview. Intel Corpo-
ration, 2006.

[Hem05] Sandor Heman. Super-Scalar Database Compression Between
RAM and CPU-Cache. Masters thesis, Universiteit van Amster-
dam, July 2005.

[HKMW66] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index
register allocation. J. ACM, 13(1):43–61, 1966.

[HL07] Bingsheng He and Qiong Luo. Cache-oblivious query processing.
In CIDR, Asilomar, CA, USA, 2007.

[HLAM06] Stavros Harizopoulos, Velen Liang, Daniel Abadi, and Samuel
Madden. Performance Tradeoffs in Read-Optimized Databases.
In Proc. VLDB, 2006.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures. In Proc. Inter-
national Symposium on Computer Architecture, San Diego, CA,
USA, 1993.

[HNZB07] Sandor Heman, Niels Nes, Marcin Zukowski, and Peter Boncz.
Vectorized Data Processing on the Cell Broadband Engine. In
Proc. SIGMOD DaMoN Workshop, Beijing, China, 2007.

[HNZB08] Sandor Heman, Niels Nes, Marcin Zukowski, and Peter Boncz.
Positional Delta Trees to reconcile updates with read-optimized
data storage. Technical Report INS-E0801, CWI, August 2008.

[Hoa61] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM,
4(7):321, 1961.

[HP03] Richard A. Hankins and Jignesh M. Patel. Data Morphing: An
Adaptive, Cache-Conscious Storage Technique. In Proc. VLDB,
pages 417–428, Berlin, Germany, 2003.

[HP07] John L. Hennessy and David A. Patterson. Computer Architec-
ture – A Quantitive Approach. Morgan Kaufmann Publishers, 4th
edition, 2007.

BIBLIOGRAPHY 207

[HPJ+07] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju
Mancheril, Anastassia Ailamaki, and Babak Falsafi. Database
Servers on Chip Multiprocessors: Limitations and Opportunities.
In Proc. CIDR, Asilomar, CA, USA, 2007.

[HSA05] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ail-
amaki. QPipe: a simultaneously pipelined relational query engine.
In Proc. SIGMOD, Baltimore, MD, USA, 2005.

[Huf52] D.A. Huffman. A method for construction of minimum redun-
dancy codes. In Proceedings of the IEEE, volume 40, pages 1098–
1101, 1952.

[HYF+07] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govin-
daraju, Qiong Luo, and Pedro V. Sander. Relational Joins on
Graphics Processors. Technical Report HKUST-CS07-06, Depart-
ment of Computer Science and Engineering, HKUST, March 2007.

[HZdVB06] S. Heman, M. Zukowski, A. P. de Vries, and P. A. Boncz. Mon-
etDB/X100 at the 2006 TREC TeraByte Track. In Proceedings of
the Text REtrieval Conference (TREC-2006), Gaithersburg, MD,
USA, November 2006.

[HZdVB07] Sandor Heman, Marcin Zukowski, Arjen P. de Vries, and
P. Boncz. Efficient and Flexible Information Retrieval Using Mon-
etDB/X100. In Proc. CIDR, 2007.

[IBM07] IBM Corporation. Cell Broadband Engine Architecture, 2007.

[Int06] Intel Corporation. Intel Itanium Architecture Software Developer’s
Manual, January 2006.

[Int07a] Intel Corporation. Intel 64 and IA-32 Architectures Optimization
Reference Manual, November 2007.

[Int07b] Intel Corporation. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, August 2007.

[Int07c] Intel Corporation. Intel C++ Intrinsic Reference, 2007.

[Int08] Intel Corporation. Intel AVX: New Frontiers in Performance Im-
provements and Energy Efficiency, March 2008.

208 BIBLIOGRAPHY

[JRSS08] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret
Swart. Row-wise parallel predicate evaluation. In Proc. VLDB,
Auckland, New Zealand, 2008.

[KGM95] B. Kao and H. Garcia-Molina. An overview of real-time database
systems. In Sang H. Song, editor, Advances in Real-Time Systems,
pages 463–486, 1995.

[Khr09] Khronos Group. OpenCL - The Open Standard for Heterogeneous
Parallel Programming, February 2009.

[KPH+98] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C.
Raphael, and Walter E. Baker. Performance characterization of
a Quad Pentium Pro SMP using OLTP workloads. In Proc. In-
ternational Symposium on Computer Architecture, pages 15–26,
Barcelona, Spain, 1998.

[KSR01] Yannis Kotidis, Yannis Sismanis, and Nick Roussopoulos. Shared
index scans for data warehouses. In Proc. DaWaK, 2001.

[KSvdBB96] Martin L. Kersten, F. Schippers, Carel A. van den Berg, and Pe-
ter A. Boncz. Mx documentation tool, January 1996.

[Lar97] Per-Ake Larson. Grouping and duplicate elimination: Benefits of
early aggregation. Technical Report MSR-TR-97-36, Microsoft,
December 1997.

[LBE+98] Jack L. Lo, Luiz André Barroso, Susan J. Eggers, Kourosh Ghara-
chorloo, Henry M. Levy, and Sujay S. Parekh. An analysis of
database workload performance on simultaneous multithreaded
processors. In Proc. International Symposium on Computer Ar-
chitecture, pages 39–50, Barcelona, Spain, 1998.

[LBM+07] Christian A. Lang, Bishwaranjan Bhattacharjee, Timothy Malke-
mus, Sriram Padmanabhan, and Kwai Wong. Increasing buffer-
locality for multiple relational table scans through grouping and
throttling. In ICDE, Istanbul, Turkey, 2007.

[LBMW07] Christian A. Lang, Bishwaranjan Bhattacharjee, Tim Malkemus,
and Kwai Wong. Increasing Buffer-Locality for Multiple Index
Based Scans through Intelligent Placement and Index Scan Speed
Control. In Proc. VLDB, Vienna, Austria, 2007.

BIBLIOGRAPHY 209

[Lib] LibOIL. http://liboil.freedesktop.org.

[LM96] Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetch-
ing for Recursive Data Structures. In ASPLOS, pages 222–233,
Cambridge, MA, USA, 1996.

[LM99] Chi-Keung Luk and Todd C. Mowry. Automatic Compiler-
Inserted Prefetching for Pointer-Based Applications. IEEE Trans.
Computers, 48(2):134–141, 1999.

[LM07] Sang-Won Lee and Bongki Moon. Design of flash-based DBMS:
an in-page logging approach. In Proc. SIGMOD, Beijing, China,
2007.

[MA95] Petro Estakhri Mahmud Assar, Siamack Nemazie. Flash memory
mass storage architecture. US patent 5,388,083, 1995.

[Mai82] David Maier. Using write-once memory for database storage. In
Proc. PODS, Los Angeles, CA, USA, 1982.

[MBH+02] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton,
David A. Koufaty, J. Alan Miller, and Michael Upton. Hyper-
Threading Technology Architecture and Microarchitecture. Intel
Technology Journal, 6(1):4–15, February 2002.

[MBK00] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What
Happens During a Join? Dissecting CPU and Memory Optimiza-
tion Effects. In Proc. VLDB, Cairo, Egypt, 2000.

[MBK02] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Opti-
mizing Main-Memory Join On Modern Hardware. IEEE Transac-
tions on Knowledge and Data Eng., 14(4):709–730, 2002.

[MBNK04] Stefan Manegold, Peter Boncz, Niels Nes, and Martin Kersten.
Cache-Conscious Radix-Decluster Projections. In Proc. VLDB,
Toronto, Canada, 2004.

[McF93] S. McFarling. Combining Branch Predictors. Technical Report
TN-36, Digital Equipment Corporation, June 1993.

[MDO94] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and Bret R.
Olszewski. Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. SIGOPS Oper.
Syst. Rev., 28(5):145–156, 1994.

http://liboil.freedesktop.org

210 BIBLIOGRAPHY

[Mic] Microsoft Corporation. ODBC Programmer’s Reference. http:
//msdn.microsoft.com/en-us/library/ms714177.aspx.

[Moe98] Guido Moerkotte. Small materialized aggregates: A light weight
index structure for data warehousing. In Proc. VLDB, 1998.

[Moo65] G. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[MPK00] S. Manegold, A. Pellenkoft, and M. Kersten. A Multi-Query Op-
timizer for Monet. In Proc. BNCOD, 2000.

[NBC+95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and
David B. Lomet. AlphaSort: A Cache-Sensitive Parallel Exter-
nal Sort. VLDB J., 4(4):603–627, 1995.

[NCR02] NCR Corp. Teradata Multi-Value Compression V2R5.0. 2002.

[Net] Netezza Inc. Netezza. http://www.netezza.com.

[NVI08] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device
Architecture. Reference Manual. Version 2.0, June 2008.

[Pat04] David A. Patterson. Latency lags bandwith. Communications of
the ACM, 47:71–75, October 2004.

[PB61] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detec-
tion. Proceedings of the IRE, 49:228–235, 1961.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In Proc. SIGMOD,
pages 109–116, Chicago, IL, USA, 1988.

[PHS99] Jih-Kwon Peir, Windsor W. Hsu, and Alan Jay Smith. Functional
Implementation Techniques for CPU Cache Memories. IEEE
Transactions on Computers, 48(2):100–110, 1999.

[PMAJ01] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran.
Block Oriented Processing of Relational Database Operations in
Modern Computer Architectures. In Proc. ICDE, Heidelberg, Ger-
many, 2001.

[PP03] Meikel Pöss and Dmitry Potapov. Data Compression in Oracle.
In Proc. VLDB, 2003.

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://www.netezza.com

BIBLIOGRAPHY 211

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122–144, 2004.

[QRR+08] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas,
and Guy M. Lohman. Main-Memory Scan Sharing For Multi-Core
CPUs. In Proc. VLDB, Auckland, New Zealand, 2008.

[RD05] R. Ramamurthy and D. DeWitt. Buffer pool aware query opti-
mization. In Proc. CIDR, 2005.

[RDS02] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A case
for fractured mirrors. In Proc. VLDB, pages 430–441, Hong Kong,
2002.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free
execution of lock-based programs. In Proc. ASPLOS, San Jose,
CA, USA, 2002.

[Ros02] Kenneth A. Ross. Conjunctive Selection Conditions in Main Mem-
ory. In Proc. PODS, Washington, DC, USA, 2002.

[Ros07] Kenneth A. Ross. Efficient Hash Probes on Modern Processors.
In Proc. ICDE, Istanbul, Turkey, 2007.

[Ros08] Kenneth A. Ross. Modeling the Performance of Algorithms on
Flash Memory Devices. 2008.

[RR99] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In Proc. VLDB, Edinburgh,
1999.

[RR00] Jun Rao and Kenneth A. Ross. Making B+-Trees Cache Conscious
in Main Memory. In Proc. SIGMOD, Philadelphia, PA, USA,
2000.

[RS60] Irving Reed and Gustave Salomon. Polynomial Codes over Certain
Finite Fields. SIAM Journal ofApplied Mathematics, 8:300–304,
1960.

[RS82] Ronald L. Rivest and Adi Shamir. How to reuse a ẅrite - once
m̈emory (Preliminary Version). In Proc. STOC, San Francisco,
CA, USA, 1982.

212 BIBLIOGRAPHY

[RWB98] S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7:
automatic ad hoc, filtering, VLC and interactive track. In Proc.
TREC, 1998.

[SAB+05] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson
Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex
Rasin, Nga Tran, and Stanley B. Zdonik. C-Store: A Column-
oriented DBMS. In Proc. VLDB, 2005.

[Sch04] Steven W. Schlosser. Using MEMS-based Storage Devices in Com-
puter Systems. Ph.d. thesis, Carnegie Mellon University, May
2004.

[SG07] Bianca Schroeder and Garth Gibson. Disk failures in the real
world: What does an mttf of 1,000,000 hours mean to you? In
Proc. FAST, 2007.

[Sho99] A. Shoshani et al. Multidimensional indexing and query coordi-
nation for tertiary storage management. In Proc. SSDBM, 1999.

[SHWG08] Mehul A. Shah, Stavros Harizopoulos, Janet L. Wiener, and Goetz
Graefe. Fast Scans and Joins using Flash Drives . 2008.

[SHWK76] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter
Kreps. The design and implementation of ingres. ACM Trans.
Database Syst., 1(3):189–222, 1976.

[SK06] Gerrit Saylor and Badriddine Khessib. Large scale Itanium 2 pro-
cessor OLTP workload characterization and optimization. In Proc.
SIGMOD DaMoN Workshop, Chicago, IL, USA, 2006.

[SKN94] A. Shatdahl, C. Kant, and J. Naughton. Cache Conscious Algo-
rithms for Relational Query Processing. In Proc. VLDB, Edin-
burgh, 1994.

[SKS02] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts. McGraw-Hill, 4th edition, 2002.

[SKT+05] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and
J. B. Joyner. POWER5 system microarchitecture. IBM J. RES.
and DEV., 49(4/5):505–512, July/September 2005.

BIBLIOGRAPHY 213

[SL76] D. G. Severance and G. M. Lohman. Differential Files: Their
Application to the Maintenance of Large Databases. ACM Trans.
Database Syst., 1(3), 1976.

[Smi82] Alan J. Smith. Cache Memories. ACM Comput. Surv., 14(3):473–
530, 1982.

[SS86] G. Sacco and M. Schkolnick. Buffer management in relational
database systems. ACM Trans. Database Syst., 11(4), 1986.

[SS96] S. Sarawagi and M. Stonebraker. Reordering query execution in
tertiary memory databases. In Proc. VLDB, 1996.

[SSAG03] Steven W. Schlosser, Jiri Schindler, Anastassia Ailamaki, and
Gregory R. Ganger. Exposing and exploiting internal paral-
lelism in MEMS-based storage. Technical Report CMU-CS-03-125,
Carnegie Mellon University, mar 2003.

[SSB00] Pand S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and exten-
sible algorithms for multi query optimization. In Proc. SIGMOD,
2000.

[SSS+04] Minglong Shao, Jiri Schindler, Steven W. Schlosser, Anastassia
Ailamaki, and Gregory R. Ganger. Clotho: decoupling memory
page layout from storage organization. In Proc. VLDB, Toronto,
Canada, 2004.

[Ste90] Per Stenström. A Survey of Cache Coherence Schemes for Multi-
processors. Computer, 23(6):12–24, 1990.

[Sto07] Jon Stokes. Inside the Machine. No Starch Press, 2007.

[Suna] Sun Microsystems Inc. JDBC Overview. http://java.sun.com/
products/jdbc/overview.html.

[Sunb] Sun Microsystems Inc. Ultrasparc processors. http://www.sun.
com/processors/.

[Syb] Sybase Inc. Sybase IQ. http://www.sybase.com.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultane-
ous multithreading: maximizing on-chip parallelism. In Proc. In-
ternational Symposium on Computer Architecture, S. Margherita
Ligure, Italy, 1995.

http://java.sun.com/products/jdbc/overview.html
http://java.sun.com/products/jdbc/overview.html
http://www.sun.com/processors/
http://www.sun.com/processors/
http://www.sybase.com

214 BIBLIOGRAPHY

[TKK+88] Shun’ichi Torii, Keiji Kojima, Yasusi Kanada, Akiharu Sakata,
Seiichi Yoshizumi, and Masami Takahashi. Accelerating Nonnu-
merical Processing by an Extended Vector Processor. In Proc.
ICDE, Los Angeles, CA, USA, 1988.

[TP72] T. Teorey and T. Pinkerton. A comparative analysis of disk
scheduling policies. Commun. ACM, 15(3), 1972.

[Tra94] Transaction Processing Performance Council. TPC Benchmark A,
Revision 2.0, June 1994.

[Tra06] Transaction Processing Performance Council. TPC Benchmark H,
Revision 2.6.1, June 2006.

[Tra07] Transaction Processing Performance Council. TPC Benchmark C,
Revision 5.9, June 2007.

[Tro03] Andrew Trotman. Compressing inverted files. Inf. Retr., 6(1):5–
19, 2003.

[Val87] Patrick Valduriez. Join indices. ACM Trans. Database Syst.,
12(2):218–246, 1987.

[Waa02] Florian Waas. Extending Iterators for Advanced Query Execution.
In Proc. ADC, Melbourne, Australia, 2002.

[Wel84] T. A. Welch. A technique for high-performance data compression.
IEEE Computer, 17(6):8–19, 1984.

[Wil91] Ross N. Williams. An extremely fast Ziv-Lempel data compression
algorithm. In Data Compression Conference, pages 362–371, 1991.

[WKHM00] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Mo-
erkotte. The implementation and performance of compressed
databases. SIGMOD Record, 29(3):55–67, September 2000.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
gigabytes (2nd ed.): compressing and indexing documents and im-
ages. Morgan Kaufmann Publishers, 1999.

[Wol04] Wayne Wolf. The future of multiprocessor systems-on-chips. In
DAC ’04: Proceedings of the 41st annual conference on Design
automation, San Diego, CA, USA, 2004.

BIBLIOGRAPHY 215

[YAA03] Hailing Yu, Divyakant Agrawal, and Amr El Abbadi. Tabular
Placement of Relational Data on MEMS-based Storage Devices.
In VLDB, pages 680–693, Berlin, Germany, 2003.

[YD97] J.-B. Yu and D. DeWitt. Query pre-execution and batching in
paradise: A two-pronged approach to the efficient processing of
queries on tape-resident raster images. In Proc. SSDBM, 1997.

[ZBK04] Marcin Zukowski, Peter A. Boncz, and Martin L. Kersten. Co-
operative scans. Technical Report INS-E0411, CWI, December
2004.

[ZBNH05] Marcin Zukowski, Peter Boncz, Niels Nes, and Sandor Heman.
MonetDB/X100: A DBMS In The CPU Cache. Data Engineering
Bulletin, 28(2), 2005.

[ZCRS05] Jingren Zhou, John Cieslewicz, Kenneth A. Ross, and Mihir Shah.
Improving Database Performance on Simultaneous Multithreading
Processors. In Proc. VLDB, Trondheim, Norway, 2005.

[ZHB06] Marcin Zukowski, Sandor Heman, and Peter Boncz. Architecture-
Conscious Hashing. In Proc. SIGMOD DaMoN Workshop,
Chicago, IL, USA, 2006.

[ZHNB06] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz.
Super-Scalar RAM-CPU Cache Compression. In Proc. ICDE,
2006.

[ZHNB07] Marcin Zukowski, Sandor Heman, Niels Nes, and P. Boncz. Coop-
erative Scans: Dynamic Bandwidth Sharing in a DBMS. In Proc.
VLDB, 2007.

[ZLS08] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance
of compressed inverted list caching in search engines. In Proc.
WWW, Beijing, China, 2008.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2):6, 2006.

[ZNB08] Marcin Zukowski, Niels Nes, and Peter Boncz. DSM vs. NSM:
CPU Performance Tradeoffs in Block-Oriented Query Processing.
In Proc. SIGMOD DaMoN Workshop, 2008.

216 BIBLIOGRAPHY

[ZR02] Jingren Zhou and Kenneth A. Ross. Implementing database op-
erations using SIMD instructions. In Proc. SIGMOD, Madison,
USA, 2002.

[ZR03a] Jingren Zhou and Kenneth A. Ross. A Multi-Resolution Block
Storage Model for Database Design. In Proc. IDEAS, Hong Kong,
2003.

[ZR03b] Jingren Zhou and Kenneth A. Ross. Buffering Accesses to
Memory-Resident Index Structures. In Proc. VLDB, Berlin, Ger-
many, 2003.

[ZR04] Jingren Zhou and Kenneth A. Ross. Buffering Database Opera-
tions for Enhanced Instruction Cache Performance. In Proc. SIG-
MOD, Paris, France, 2004.

[Zuk02] Marcin Zukowski. Parallel Query Execution in Monet on SMPMa-
chines. Masters thesis, Vrije Universiteit Amsterdam and Warsaw
University, August 2002.

[Zuk05a] Marcin Zukowski. Hardware Conscious DBMS Architecture for
Data-Intensive Applications. In Proc. VLDB PhD Workshop,
2005.

[Zuk05b] Marcin Zukowski. Improving I/O Bandwidth for Data-Intensive
Applications. In Proc. BNCOD Doctoral Consortium, 2005.

Summary

With the performance of modern computers improving at a rapid pace, database
technology has problems with fully exploiting the benefits that each new hard-
ware generation brings. This has caused a significant performance gap between
general-purpose databases and specialized, application-optimized solutions for
large-volume computation-intensive processing problems, as found in areas in-
cluding information retrieval, scientific data management and decision support.
This thesis attempts to enhance the state-of-the-art in architecture-conscious

database research, both in the query execution layer as well as in the data stor-
age layer, and in the way these work together. Thus, rather than focusing on
an isolated problem or algorithm, the thesis presents a new database system
architecture, realized in the MonetDB/X100 prototype, that combines a coher-
ent set of new architecture-conscious techniques that are designed to work well
together.
The motivation for the new query execution layer comes from the analysis of

the problems of two popular approaches to query processing: tuple-at-a-time op-
erator pipelining, used in most existing systems, and column-at-a-time material-
izing operators, found in MonetDB. MonetDB/X100 proposes a new vectorized
in-cache execution model that exploits ideas from both approaches and com-
bines the scalability of the former with the high-performance bulk processing of
the latter. This is achieved by modifying the traditional operator pipeline model
to operate on cache-resident vectors of data using highly optimized primitive
functions. Additionally, within this architecture, a set of hardware-conscious
design and programming techniques is presented, enabling efficient execution
of typical data processing tasks. The resulting query execution layer efficiently
exploits modern super-scalar CPUs and cache-memory systems and achieves
in-memory performance often one or two orders of magnitude higher than the
existing approaches.
In the storage area there are two hardware trends that significantly influence

217

218 Summary

database performance. First, the imbalance between sequential disk bandwidth
and random disk latency continuously increases. As a result, access methods that
rely on random I/O become less attractive, making various forms of sequential
access the preferred option. MonetDB/X100 follows this idea with ColumnBM
– a bandwidth-optimized column store. Secondly, both disk bandwidth and la-
tency improve significantly more slowly than the computing power of modern
CPUs, especially with the advent of multi-core CPUs. ColumnBM introduces
two techniques that address this issue. Lightweight in-cache compression allows
trading some processor time for an increased perceived disk bandwidth. High
decompression performance is achieved by applying the decompression on the
RAM-cache boundary, providing cache-resident data directly to the execution
layer. Additionally, the introduced family of compression methods provides per-
formance an order of magnitude higher than previous solutions. Cooperative
scans observe current system activity and dynamically schedule I/O operations
to exploit overlapping demands of different queries. This amortizes the cost of
disk access among multiple consumers, and also better utilizes the available
buffer space, providing much better performance with many concurrently exe-
cuting queries.
By combining CPU-efficient processing with a bandwidth-optimized storage

facility, MonetDB/X100 has been able to achieve its high in-memory raw query
execution power also on huge disk-resident datasets. We evaluated its perfor-
mance both on TPC-H decision support data sets as well as in the area of large-
volume information retrieval (the Terabyte TREC task), where it successfully
competed with the specialized solutions, both for in-memory and disk-based
tasks.

Samenvatting

De prestaties van moderne computers nemen in hoog tempo toe. Database tech-
nologie toont echter problemen bij het benutten van de verbeteringen die iedere
hardware generatie brengt. Dit heeft geleid tot een significante discrepantie
tussen de prestaties van traditionele database engines en gespecialiseerde, app-
licatie-geoptimaliseerde oplossingen voor data- en reken-intensieve verwerkings-
problemen, zoals voorkomen binnen de ’information retrieval’, het beheren van
wetenschappelijke data, en ’decision support’.
In dit proefschrift wordt gepoogd de state-of-the-art op het gebied van

hardwarearchitectuur-bewust database onderzoek te verbeteren, binnen zowel
de software lagen voor executie als voor opslag, maar ook binnen de manier
waarop deze twee samenwerken. In plaats van zich te richten op een enkel prob-
leem of algoritme in isolatie, presenteert dit proefschrift een nieuwe database
architectuur, gerealiseerd in het MonetDB/X100 prototype, die een coherente
verzameling van hardware-bewuste technieken omhelst, ontworpen om goed
samen te kunnen werken.
De motivatie voor de nieuwe queryexecutielaag komt voort uit de analyse

van de problemen die inherent zijn aan twee populaire queryexecutie metho-
den: tuple-voor-tuple operator pipelining, zoals gebruikt in de meeste bestaande
systemen, en kolom-voor-kolom materialiserende operatoren, zoals in MonetDB.
MonetDB/X100 stelt een nieuw gevectoriseerd in-cache executiemodel voor, dat
ideeën uit beide methoden gebruikt, en de schaalbaarheid van de eerste com-
bineert met de hoge prestaties bij bulk verwerking van de tweede. Dit wordt
bereikt door het traditionele operator pipeline model aan te passen, zodat het
opereert op vectoren van data in de CPU cache, gebruikmakend van sterk geopti-
maliseerde primitive functies. Tevens wordt binnen deze architectuur een verza-
meling hardware-bewuste ontwerp- en programmeertechnieken gepresenteerd,
die de efficiënte executie van typische dataverwerkingopdrachten bewerkstelli-
gen. De resulterende queryexecutielaag maakt efficiënt gebruik van moderne

219

220 Samenvatting

’super-scalar CPUs’ en cache geheugens, en bereikt binnen het werkgeheugen
prestaties die één of twee ordes van grootte sneller zijn dan die van bestaande
systemen.
Op het gebied van gegevensopslag zijn er twee hardware trends die een signifi-

cante invloed hebben op database prestaties. Allereerst blijft het gebrek aan bal-
ans tussen sequentiële disk bandbreedte en de toegangstijd bij willekeurige schijf
zoekopdrachten verslechteren. Als resultaat daarvan worden toegangsmethoden
die op willekeurige I/O berusten minder aantrekkelijk, waardoor sequentiële toe-
gang meer voor de hand komt te liggen. MonetDB/X100 haakt in op dit idee
met ColumnBM – een kolom opslagsysteem geoptimaliseerd voor sequentiële
I/O. Ten tweede, nemen zowel bandbreedte als toegangstijd van hardeschijven
aanzienlijk trager toe dan de rekenkracht van moderne CPUs, vooral sinds
de komst van CPUs met meerdere verwerkingseenheden. ColumnBM intro-
duceert twee technieken die dit probleem aanpakken. Lichtgewicht in-cache com-
pressiemaakt het mogelijk om processorkracht te verruilen tegen een toename in
waargenomen schijf bandbreedte. Hoge decompressiesnelheid wordt bereikt door
te decomprimeren op de RAM-cache grens, en daarbij de in de cache aanwezige
data direct aan te bieden aan de executie laag. Tevens leveren voorgestelde
compressie methoden snelheidsprestaties die een orde van grootte hoger zijn dan
voorgaande oplossingen. Coöperatieve Scans observeren lopende activiteiten bin-
nen het systeem, en plannen I/O operaties dusdanig dat overlap tussen lopende
queries wordt uitgebuit. Dit maakt het mogelijk om de kosten van een I/O op-
eratie te verdelen over meerdere consumenten, en tevens buffer ruimte beter te
benutten, waardoor prestaties tijdens het gelijktijdig uitvoeren van meerdere
queries aanzienlijk toenemen.
Door CPU-efficiënte verwerking en opslag geoptimaliseerd voor bandbreedte

te combineren, is MonetDB/X100 in staat zijn hoge snelheden in dataverwerking
binnen het werkgeheugen ook te bewerkstelligen in geval van gegevens die van
de harde schijf moeten komen. Wij hebben de prestaties geëvalueerd zowel op
de TPC-H ’decision support’ dataset als op een grote ’information retrieval’
dataset (de Terabyte TREC data), waar het systeem succesvol concurreerde met
gespecialiseerde oplossingen, zowel binnen het werkgeheugen als in scenario’s
waarbij de data van schijf moest komen.

Streszczenie

Wydajność nowoczesnych komputerów zwiększa się w błyskawicznym tempie.
Niestety, systemy bazodanowe mają problemy z pełnym wykorzystaniem możli-
wości pojawiających się z każdą kolejną generacją sprzętu komputerowego. To
zjawisko doprowadziło do znaczącej różnicy wydajności pomiędzy bazami danych
a wyspecjalizowanymi rozwiązaniami zoptymalizowanymi do intensywnego obli-
czeniowo przetwarzania dużych ilości danych, takich jak symulacje naukowe,
wyszukiwanie informacji czy przetwarzanie multimediów.
Niniejsza praca proponuje nowe technologie bazodanowe koncentrujące się na

efektywnym wykorzystaniu nowoczesnych architektur komputerów. Przedstaw-
ione są nowe rozwiązania zarówno w warstwie przetwarzającej dane w pamięci,
jak również w warstwie przechowywania danych na dysku. Dodatkowo, kładziony
jest nacisk na współpracę różnych rozwiązań wewnątrz spójnej architektury, zre-
alizowanej na przykładzie prototypowego systemu MonetDB/X100.
W warstwie przetwarzania danych w pamięci, proponujemy nową architek-

turę wektorowego przetwarzania w pamięci podręcznej procesora (vectorized in-
cache processing). Ta technika pozwala na połączenie skalowalności tradycyjnego
modelu potokowego (pipeline) z wysoką wydajnością przetwarzania hurtowego
(bulk-processing) zaproponowanego w systemie MonetDB. Dodatkowo, proponu-
jemy zestaw metod pozwalających efektywne wykonywanie standardowych zadań
bazodanowych w ramach tej architektury. Wynikowy system skutecznie wyko-
rzystuje nowoczesne procesory osiągając wydajność w pamięci o jeden lub dwa
rzędy wielkości wyższą niż istniejące rozwiązania.
W warstwie przechowywania danych, dwie tendencje w rozwoju sprzętu

wpływają na wydajność baz danych. Po pierwsze, nierównowaga pomiędzy sek-
wencyjnym i losowym dostępem do dysku się systematycznie zwiększa. W efek-
cie, rozwiązania bazujące na losowym dostępie stają się mniej atrakcyjne, czyniąc
różne formy dostępu sekwencyjnego preferowanymi metodami. MonetDB/X100
idzie w tym kierunku, proponując ColumnBM - kolumnowy system przechowywa-

221

222 Streszczenie

nia danych optymalizujący przepustowość transferu danych. Po drugie, zarówno
przepustowość jak i czas dostępu dysku polepszają się znacząco wolniej niż moc
obliczeniowa nowoczesnych procesorów. ColumnBM wprowadza dwie techniki,
które starają się rozwiązać ten problem. Szybka dekompresja w pamięci po-
dręcznej (light-weight in-cache compression) pozwala poświęcenie części czasu
procesora w celu zwiększenia efektywnego transferu danych. W metodzie współ-
pracujących odczytów (cooperative scans) dostępy do dysku są dynamicznie sz-
eregowane dostosowując się do aktywności w systemie, pozwalając zamorty-
zować koszt dostępu do dysku na wiele równolegle wykonywanych zapytań.
Dzięki polączeniu wydajnego modelu przetwarzania danych w pamięci z syte-

mem przechowywania danych optymalizującym sekwencyjny transfer z dysku,
MonetDB/X100 pozwala na skalowanie swojej wysokiej wydajności również
dla dużych rozmiarów danych, nie mieszczących się w pamięci operacyjnej.
Prezentowany system uzyskał wysoką wydajność zarówno w standardowym teś-
cie wydajności analitycznych baz danych TPC-H, jak i w teście wyszukiwania
informacji na dużą skalę (Terabyte TREC), gdzie MonetDB/X100 skutecznie
konkurował z rozwiązaniami wyspecjalizowanymi do tego typu zadań.

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI). DEGAS -
An Active, Temporal Database of Au-
tonomous Objects

1998-2 Floris Wiesman (UM). Information Re-
trieval by Graphically Browsing Meta-
Information

1998-3 Ans Steuten (TUD). A Contribution to
the Linguistic Analysis of Business Con-
versationswithin the Language/Action
Perspective

1998-4 Dennis Breuker (UM). Memory versus
Search in Games

1998-5 E.W.Oskamp (RUL). Computeronders-
teuning bij Straftoemeting

1999-1 Mark Sloof (VU). Physiology of Qual-
ity Change Modelling; Automated mod-
elling ofQuality Change of Agricultural
Products

1999-2 Rob Potharst (EUR). Classification us-
ing decision trees and neural nets

1999-3 Don Beal (UM). The Nature of Mini-
max Search

1999-4 Jacques Penders (UM). The practical
Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB). Empowering
Communities: A Method for the Legit-
imate User-DrivenSpecification of Net-
work Information Systems

1999-6 Niek J.E. Wijngaards (VU). Re-design
of compositional systems

1999-7 David Spelt (UT). Verification support
for object database design

1999-8 Jacques H.J. Lenting (UM). Informed
Gambling: Conception and Analysis of a
Multi-Agent Mechanismfor Discrete Re-
allocation.

2000-1 Frank Niessink (VU). Perspectives on
Improving Software Maintenance

2000-2 Koen Holtman (TUE). Prototyping of
CMS Storage Management

2000-3 Carolien M.T. Metselaar (UvA).
Sociaal-organisatorische gevolgen van
kennistechnologie;een procesbenadering
en actorperspectief.

2000-4 Geert de Haan (VU). ETAG, A For-
mal Model of Competence Knowledge
for User InterfaceDesign

2000-5 Ruud van der Pol (UM). Knowledge-
based Query Formulation in Informa-
tion Retrieval.

2000-6 Rogier van Eijk (UU). Programming
Languages for Agent Communication

2000-7 Niels Peek (UU). Decision-theoretic
Planning of Clinical Patient Manage-
ment

2000-8 Veerle Coupe (EUR). Sensitivity Ana-
lyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI). Principles of
Probabilistic Query Optimization

223

224 SIKS Dissertation Series

2000-10 Niels Nes (CWI). Image Database Man-
agement System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI). Scalable Dis-
tributed Data Structures for Database
Management

2001-1 Silja Renooij (UU). Qualitative Ap-
proaches to Quantifying Probabilistic
Networks

2001-2 Koen Hindriks (UU). Agent Program-
ming Languages: Programming with
Mental Models

2001-3 Maarten van Someren (UvA). Learning
as problem solving

2001-4 Evgueni Smirnov (UM). Conjunctive
and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU). Process-
ing Structured Hypermedia: A Matter
of Style

2001-6 Martijn van Welie (VU). Task-based
User Interface Design

2001-7 Bastiaan Schonhage (VU). Diva: Ar-
chitectural Perspectives on Information
Visualization

2001-8 Pascal van Eck (VU). A Composi-
tional Semantic Structure for Multi-
Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL). Towards Dis-
tributed Development of Large Object-
Oriented Models,Views of Packages as
Classes

2001-10 Maarten Sierhuis (UvA). Modeling and
Simulating Work PracticeBRAHMS: a
multiagent modeling and simulation
language forwork practice analysis and
design

2001-11 Tom M. van Engers (VUA). Knowledge
Management:The Role of Mental Mod-
els in Business Systems Design

2002-01 Nico Lassing (VU). Architecture-Level
Modifiability Analysis

2002-02 Roelof van Zwol (UT). Modelling and
searching web-based document collec-
tions

2002-03 Henk Ernst Blok (UT). Database Op-
timization Aspects for Information Re-
trieval

2002-04 Juan Roberto Castelo Valdueza (UU).
The Discrete Acyclic Digraph Markov
Model in Data Mining

2002-05 Radu Serban (VU). The Private Cy-
berspace Modeling ElectronicEnviron-
ments inhabited by Privacy-concerned
Agents

2002-06 Laurens Mommers (UL). Applied le-
gal epistemology; Building a knowledge-
based ontology ofthe legal domain

2002-07 Peter Boncz (CWI). Monet: A Next-
Generation DBMS Kernel For Query-
IntensiveApplications

2002-08 Jaap Gordijn (VU). Value Based Re-
quirements Engineering: Exploring
InnovativeE-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB). In-
tegrating Modern Business Applications
with Objectified LegacySystems

2002-10 Brian Sheppard (UM). Towards Perfect
Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU). Agent
Based Modelling of Dynamics: Biologi-
cal and Organisational Applications

2002-12 Albrecht Schmidt (Uva). Processing
XML in Database Systems

2002-13 Hongjing Wu (TUE). A Reference Ar-
chitecture for Adaptive Hypermedia
Applications

2002-14 Wieke de Vries (UU). Agent Inter-
action: Abstract Approaches to Mod-
elling, Programming and Verifying
Multi-Agent Systems

2002-15 Rik Eshuis (UT). Semantics and Veri-
fication of UML Activity Diagrams for
Workflow Modelling

2002-16 Pieter van Langen (VU). The Anatomy
of Design: Foundations, Models and Ap-
plications

2002-17 Stefan Manegold (UvA). Understand-
ing, Modeling, and Improving Main-
Memory Database Performance

SIKS Dissertation Series 225

2003-01 Heiner Stuckenschmidt (VU).
Ontology-Based Information Sharing
in Weakly Structured Environments

2003-02 Jan Broersen (VU). Modal Action Log-
ics for Reasoning About Reactive Sys-
tems

2003-03 Martijn Schuemie (TUD). Human-
Computer Interaction and Presence in
Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT). Content-Based
Video Retrieval Supported by Database
Technology

2003-05 Jos Lehmann (UvA). Causation in Arti-
ficial Intelligence and Law - A modelling
approach

2003-06 Boris van Schooten (UT). Development
and specification of virtual environ-
ments

2003-07 Machiel Jansen (UvA). Formal Explo-
rations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM). Repair Based
Scheduling

2003-09 Rens Kortmann (UM). The resolution
of visually guided behaviour

2003-10 Andreas Lincke (UvT). Electronic Busi-
ness Negotiation: Some experimental
studies on the interaction between
medium, innovation context and culture

2003-11 Simon Keizer (UT). Reasoning under
Uncertainty in Natural Language Dia-
logue using Bayesian Networks

2003-12 Roeland Ordelman (UT). Dutch speech
recognition in multimedia information
retrieval

2003-13 Jeroen Donkers (UM). Nosce Hostem -
Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN). Freezing
Language: Conceptualisation Processes
across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD). Plan Merg-
ing in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI). Feature
Grammar Systems - Incremental Main-
tenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT). Extensions of Stat-
echarts with Probability, Time, and
Stochastic Timing

2003-18 Levente Kocsis (UM). Learning Search
Decisions

2004-01 Virginia Dignum (UU). A Model for
Organizational Interaction: Based on
Agents, Founded in Logic

2004-02 Lai Xu (UvT). Monitoring Multi-party
Contracts for E-business

2004-03 Perry Groot (VU). A Theoretical and
Empirical Analysis of Approximation in
Symbolic Problem Solving

2004-04 Chris van Aart (UvA). Organizational
Principles for Multi-Agent Architec-
tures

2004-05 Viara Popova (EUR). Knowledge dis-
covery and monotonicity

2004-06 Bart-Jan Hommes (TUD). The Evalua-
tion of Business Process Modeling Tech-
niques

2004-07 Elise Boltjes (UM). Voorbeeldig onder-
wijs; voorbeeldgestuurd onderwijs, een
opstap naar abstract denken, vooral
voor meisjes

2004-08 Joop Verbeek(UM). Politie en de
Nieuwe Internationale Informatiemarkt,
Grensregionalepolitiele gegevensuit-
wisseling en digitale expertise

2004-09 Martin Caminada (VU). For the Sake
of the Argument; explorations into
argument-based reasoning

2004-10 Suzanne Kabel (UvA). Knowledge-rich
indexing of learning-objects

2004-11 Michel Klein (VU). Change Manage-
ment for Distributed Ontologies

2004-12 The Duy Bui (UT). Creating emo-
tions and facial expressions for embod-
ied agents

2004-13 Wojciech Jamroga (UT). Using Multi-
ple Models of Reality: On Agents who
Know how to Play

226 SIKS Dissertation Series

2004-14 Paul Harrenstein (UU). Logic in Con-
flict. Logical Explorations in Strategic
Equilibrium

2004-15 Arno Knobbe (UU). Multi-Relational
Data Mining

2004-16 Federico Divina (VU). Hybrid Genetic
Relational Search for Inductive Learn-
ing

2004-17 Mark Winands (UM). Informed Search
in Complex Games

2004-18 Vania Bessa Machado (UvA). Support-
ing the Construction of Qualitative
Knowledge Models

2004-19 Thijs Westerveld (UT). Using genera-
tive probabilistic models for multimedia
retrieval

2004-20 Madelon Evers (Nyenrode). Learning
from Design: facilitating multidisci-
plinary design teams

2005-01 Floor Verdenius (UvA). Methodological
Aspects of Designing Induction-Based
Applications

2005-02 Erik van der Werf (UM)). AI techniques
for the game of Go

2005-03 Franc Grootjen (RUN). A Pragmatic
Approach to the Conceptualisation of
Language

2005-04 Nirvana Meratnia (UT). Towards
Database Support for Moving Object
data

2005-05 Gabriel Infante-Lopez (UvA). Two-
Level Probabilistic Grammars for Nat-
ural Language Parsing

2005-06 Pieter Spronck (UM). Adaptive Game
AI

2005-07 Flavius Frasincar (TUE). Hypermedia
Presentation Generation for Semantic
Web Information Systems

2005-08 Richard Vdovjak (TUE). A Model-
driven Approach for Building Dis-
tributed Ontology-based Web Applica-
tions

2005-09 Jeen Broekstra (VU). Storage, Query-
ing and Inferencing for Semantic Web
Languages

2005-10 Anders Bouwer (UvA). Explaining Be-
haviour: Using Qualitative Simulation
in Interactive Learning Environments

2005-11 Elth Ogston (VU). Agent Based Match-
making and Clustering - A Decentral-
ized Approach to Search

2005-12 Csaba Boer (EUR). Distributed Simu-
lation in Industry

2005-13 Fred Hamburg (UL). Een Computer-
model voor het Ondersteunen van Eu-
thanasiebeslissingen

2005-14 Borys Omelayenko (VU). Web-Service
configuration on the Semantic Web; Ex-
ploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU). Analysis of the Dy-
namics of Cognitive Processes

2005-16 Joris Graaumans (UU). Usability of
XML Query Languages

2005-17 Boris Shishkov (TUD). Software Spec-
ification Based on Re-usable Business
Components

2005-18 Danielle Sent (UU). Test-selection
strategies for probabilistic networks

2005-19 Michel van Dartel (UM). Situated Rep-
resentation

2005-20 Cristina Coteanu (UL). Cyber Con-
sumer Law, State of the Art and Per-
spectives

2005-21 Wijnand Derks (UT). Improving Con-
currency and Recovery in Database Sys-
tems by Exploiting Application Seman-
tics

2006-01 Samuil Angelov (TUE). Foundations of
B2B Electronic Contracting

2006-02 Cristina Chisalita (VU). Contextual is-
sues in the design and use of informa-
tion technology in organizations

2006-03 Noor Christoph (UvA). The role of
metacognitive skills in learning to solve
problems

2006-04 Marta Sabou (VU). Building Web Ser-
vice Ontologies

SIKS Dissertation Series 227

2006-05 Cees Pierik (UU). Validation Tech-
niques for Object-Oriented Proof Out-
lines

2006-06 Ziv Baida (VU). Software-aided Service
Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT). XML schema
matching – balancing efficiency and ef-
fectiveness by means of clustering

2006-08 Eelco Herder (UT). Forward, Back and
Home Again - Analyzing User Behavior
on the Web

2006-09 Mohamed Wahdan (UM). Automatic
Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU). Semantic Routing
in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT). Flattening
Queries over Nested Data Types

2006-12 Bert Bongers (VU). Interactivation -
Towards an e-cology of people, our tech-
nological environment, and the arts

2006-13 Henk-Jan Lebbink (UU). Dialogue and
Decision Games for Information Ex-
changing Agents

2006-14 Johan Hoorn (VU). Software Require-
ments: Update, Upgrade, Redesign -
towards a Theory of Requirements
Change

2006-15 Rainer Malik (UU). CONAN: Text Min-
ing in the Biomedical Domain

2006-16 Carsten Riggelsen (UU). Approxima-
tion Methods for Efficient Learning of
Bayesian Networks

2006-17 Stacey Nagata (UU). User Assistance
for Multitasking with Interruptions on
a Mobile Device

2006-18 Valentin Zhizhkun (UvA). Graph trans-
formation for Natural Language Pro-
cessing

2006-19 Birna van Riemsdijk (UU). Cognitive
Agent Programming: A Semantic Ap-
proach

2006-20 Marina Velikova (UvT). Monotone
models for prediction in data mining

2006-21 Bas van Gils (RUN). Aptness on the
Web

2006-22 Paul de Vrieze (RUN). Fundaments of
Adaptive Personalisation

2006-23 Ion Juvina (UU). Development of Cog-
nitive Model for Navigating on the Web

2006-24 Laura Hollink (VU). Semantic Annota-
tion for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU). Conditional
log-likelihood MDL and Evolutionary
MCMC

2006-26 Vojkan Mihajlovic (UT). Score Re-
gion Algebra: A Flexible Framework for
Structured Information Retrieval

2006-27 Stefano Bocconi (CWI). Vox Populi:
generating video documentaries from
semantically annotated media reposito-
ries

2006-28 Borkur Sigurbjornsson (UvA). Focused
Information Access using XML Element
Retrieval

2007-01 Kees Leune (UvT). Access Control and
Service-Oriented Architectures

2007-02 Wouter Teepe (RUG). Reconciling In-
formation Exchange and Confidential-
ity: A Formal Approach

2007-03 Peter Mika (VU). Social Networks and
the Semantic Web

2007-04 Jurriaan van Diggelen (UU). Achiev-
ing Semantic Interoperability in Multi-
agent Systems: a dialogue-based ap-
proach

2007-05 Bart Schermer (UL). Software Agents,
Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-
enabled Surveillance

2007-06 Gilad Mishne (UvA). Applied Text An-
alytics for Blogs

2007-07 Natasa Jovanovic’ (UT). To Whom It
May Concern - Addressee Identification
in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU). Modeling of
Change in Multi-Agent Organizations

228 SIKS Dissertation Series

2007-09 David Mobach (VU). Agent-Based Me-
diated Service Negotiation

2007-10 Huib Aldewereld (UU). Autonomy vs.
Conformity: an Institutional Perspec-
tive on Norms and Protocols

2007-11 Natalia Stash (TUE). Incorporating
Cognitive/Learning Styles in a General-
Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN). Bayesian
Networks for Clinical Decision Sup-
port: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT). Meetings in Smart
Environments; Implications of Pro-
gressing Technology

2007-14 Niek Bergboer (UM). Context-Based
Image Analysis

2007-15 Joyca Lacroix (UM). NIM: a Situated
Computational Memory Model

2007-16 Davide Grossi (UU). Designing Invisible
Handcuffs. Formal investigations in In-
stitutions and Organizations for Multi-
agent Systems

2007-17 Theodore Charitos (UU). Reasoning
with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT). On the develop-
ment an management of adaptive busi-
ness collaborations

2007-19 David Levy (UM). Intimate relation-
ships with artificial partners

2007-20 Slinger Jansen (UU). Customer Config-
uration Updating in a Software Supply
Network

2007-21 Karianne Vermaas (UU). Fast diffusion
and broadening use: A research on res-
idential adoption and usage of broad-
band internet in the Netherlands be-
tween 2001 and 2005

2007-22 Zlatko Zlatev (UT). Goal-oriented de-
sign of value and process models from
patterns

2007-23 Peter Barna (TUE). Specification of
Application Logic in Web Information
Systems

2007-24 Georgina Ramirez Camps (CWI).
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU). Empirical Inves-
tigations in Software Process Improve-
ment

2008-01 Katalin Boer-Sorbán (EUR). Agent-
Based Simulation of Financial Markets:
A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU). On
Computer-Aided Methods for Model-
ing and Analysis of Organizations

2008-03 Vera Hollink (UvA). Optimizing hierar-
chical menus: a usage-based approach

2008-04 Ander de Keijzer (UT). Management of
Uncertain Data - towards unattended
integration

2008-05 Bela Mutschler (UT). Modeling and
simulating causal dependencies on
process-aware information systems from
a cost perspective

2008-06 Arjen Hommersom (RUN). On the Ap-
plication of Formal Methods to Clini-
cal Guidelines, an Artificial Intelligence
Perspective

2008-07 Peter van Rosmalen (OU). Supporting
the tutor in the design and support of
adaptive e-learning

2008-08 Janneke Bolt (UU). Bayesian Networks:
Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU). The para-
dox of the guided user: assistance can be
counter-effective

2008-10 Wauter Bosma (UT). Discourse ori-
ented summarization

2008-11 Vera Kartseva (VU). Designing Con-
trols for Network Organizations: A
Value-Based Approach

2008-12 Jozsef Farkas (RUN). A Semiotically
Oriented Cognitive Model of Knowledge
Representation

2008-13 Caterina Carraciolo (UvA). Topic
Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT). Context-
Aware Querying; Better Answers with
Less Effort

SIKS Dissertation Series 229

2008-15 Martijn van Otterlo (UT). The Logic
of Adaptive Behavior: Knowledge Rep-
resentation and Algorithms for the
Markov Decision Process Framework in
First-Order Domains.

2008-16 Henriette van Vugt (VU). Embodied
agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD). Applying
Architecture and Ontology to the Split-
ting and Allying of Enterprises

2008-18 Guido de Croon (UM). Adaptive Active
Vision

2008-19 Henning Rode (UT). From Document
to Entity Retrieval: Improving Preci-
sion and Performance of Focused Text
Search

2008-20 Rex Arendsen (UvA). Geen bericht,
goed bericht. Een onderzoek naar de ef-
fecten van de introductie van elektro-
nisch berichtenverkeer met de overheid
op de administratieve lasten van bedri-
jven.

2008-21 Krisztian Balog (UvA). People Search
in the Enterprise

2008-22 Henk Koning (UU). Communication of
IT-Architecture

2008-23 Stefan Visscher (UU). Bayesian net-
work models for the management of
ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU). Using back-
ground knowledge in ontology matching

2008-25 Geert Jonker (UU). Efficient and Equi-
table Exchange in Air Traffic Manage-
ment Plan Repair using Spender-signed
Currency

2008-26 Marijn Huijbregts (UT). Segmentation,
Diarization and Speech Transcription:
Surprise Data Unraveled

2008-27 Hubert Vogten (OU). Design and Imple-
mentation Strategies for IMS Learning
Design

2008-28 Ildiko Flesch (RUN). On the Use of In-
dependence Relations in Bayesian Net-
works

2008-29 Dennis Reidsma (UT). Annotations and
Subjective Machines - Of Annotators,
Embodied Agents, Users, and Other
Humans

2008-30 Wouter van Atteveldt (VU). Seman-
tic Network Analysis: Techniques for
Extracting, Representing and Querying
Media Content

2008-31 Loes Braun (UM). Pro-Active Medical
Information Retrieval

2008-32 Trung H. Bui (UT). Toward Affective
Dialogue Management using Partially
Observable Markov Decision Processes

2008-33 Frank Terpstra (UvA). Scientific Work-
flow Design; theoretical and practical is-
sues

2008-34 Jeroen de Knijf (UU). Studies in Fre-
quent Tree Mining

2008-35 Ben Torben Nielsen (UvT). Dendritic
morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN). Symmetric
Causal Independence Models

2009-02 Willem Robert van Hage (VU). Evalu-
ating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT). A Framework for
Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN). Improv-
ing the Quality of Organisational Policy
Making using Collaboration Engineer-
ing

2009-05 Sietse Overbeek (RUN). Bridging Sup-
ply and Demand for Knowledge Inten-
sive Tasks - Based on Knowledge, Cog-
nition, and Quality

2009-06 Muhammad Subianto (UU). Under-
standing Classification

2009-07 Ronald Poppe (UT). Discriminative
Vision-Based Recovery and Recognition
of Human Motion

2009-08 Volker Nannen (VU). Evolutionary
Agent-Based Policy Analysis in Dy-
namic Environments

2009-09 Benjamin Kanagwa (RUN). Design,
Discovery and Construction of Service-
oriented Systems

230 SIKS Dissertation Series

2009-10 Jan Wielemaker (UvA). Logic program-
ming for knowledge-intensive interac-
tive applications

2009-11 Alexander Boer (UvA). Legal Theory,
Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-
Universitaet zu Berlin). Operating
Guidelines for Services

2009-13 Steven de Jong (UM). Fairness in Multi-
Agent Systems

2009-14 Maksym Korotkiy (VU). From
ontology-enabled services to service-
enabled ontologies (making ontologies
work in e-science with ONTO-SOA).

2009-15 Rinke Hoekstra (UvA). Ontology Rep-
resentation - Design Patterns and On-
tologies that Make Sense

2009-16 Fritz Reul (UvT). New Architectures in
Computer Chess

2009-17 Laurens van der Maaten (UvT). Feature
Extraction from Visual Data

2009-18 Fabian Groffen (CWI). Armada, An
Evolving Database System

2009-19 Valentin Robu (CWI). Modeling Prefer-
ences, Strategic Reasoning and Collab-
oration in Agent-Mediated Electronic
Markets

2009-20 Bob van der Vecht (UU). Adjustable
Autonomy: Controling Influences on
Decision Making

2009-21 Stijn Vanderlooy (UM). Ranking and
Reliable Classification

2009-22 Pavel Serdyukov (UT). Search For Ex-
pertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU). Modelling Web
Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA). Cognitive
Models for Training Simulations

2009-25 Alex van Ballegooij (CWI). RAM: Ar-
ray Database Management through Re-
lational Mapping

2009-26 Fernando Koch (UU). An Agent-Based
Model for the Development of Intelli-
gent Mobile Services

2009-27 Christian Glahn (OU). Contextual Sup-
port of social Engagement and Reflec-
tion on the Web

2009-28 Sander Evers (UT). Sensor Data Man-
agement with Probabilistic Models

2009-29 Stanislav Pokraev (UT). Model-
Driven Semantic Integration of Service-
Oriented Applications

2009-30 Marcin Zukowski (CWI). Balanc-
ing Vectorized Query Execution with
Bandwidth-Optimized Storage

2009-31 Sofiya Katrenko (UvA). A Closer Look
at Learning Relations from Text

	1 Introduction
	1.1 Problem statement
	1.2 Research direction
	1.3 Research questions
	1.4 Research results and thesis outline

	2 Computer hardware evolution
	2.1 Modern CPU architecture
	2.1.1 Basic CPU computing model
	2.1.2 Pipelined execution
	2.1.3 SIMD instructions
	2.1.4 Superscalar execution
	2.1.5 Hazards
	2.1.5.1 Data hazards
	2.1.5.2 Control hazards
	2.1.5.3 Structure hazards

	2.1.6 Deepening the pipeline
	2.1.7 Development trends and future architectures
	2.1.7.1 Simultaneous multithreading
	2.1.7.2 Chip multiprocessors
	2.1.7.3 Heterogeneous computation platforms

	2.2 Memory system
	2.2.1 Hierarchical memory system
	2.2.2 Cache memory organization
	2.2.3 Cache memory operation and control
	2.2.4 Virtual memory
	2.2.5 Future trends

	2.3 Hard-disk storage
	2.3.1 Disk performance improvements
	2.3.2 RAID systems
	2.3.3 Flash storage
	2.3.4 Future trends

	2.4 Conclusions

	3 Databases on modern hardware
	3.1 Relational model
	3.1.1 Relational model implementation
	3.1.1.1 Physical relation representation
	3.1.1.2 Query execution plans
	3.1.1.3 Query language

	3.2 DBMS architecture
	3.3 Tuple-at-a-time iterator model
	3.3.1 Tuple-at-a-time model performance characteristics

	3.4 Column-at-a-time execution in MonetDB
	3.4.1 Breaking the column-at-a-time model

	3.5 Architecture-conscious database research
	3.5.1 Analyzing database performance on modern hardware
	3.5.2 Improving data-cache
	3.5.3 Improving instruction-cache
	3.5.4 Exploiting superscalar CPUs
	3.5.5 Intra-CPU parallelism
	3.5.6 Alternative hardware platforms
	3.5.7 Analyzing and improving database I/O performance

	3.6 Conclusions

	4 MonetDB/X100 overview
	4.1 MonetDB/X100 architecture
	4.1.1 Query language

	4.2 Vectorized in-cache execution model
	4.2.1 Vectorized iterator model
	4.2.1.1 Vectors
	4.2.1.2 Operators
	4.2.1.3 Primitives

	4.2.2 In-cache execution
	4.2.2.1 Cache interference
	4.2.2.2 Vector size and allocation

	4.2.3 Execution layer performance

	4.3 Bandwidth-optimized storage
	4.3.1 Scan-based processing
	4.3.2 ColumnBM storage format
	4.3.3 Index structures
	4.3.4 Updates
	4.3.4.1 Delta-based updates
	4.3.4.2 Positional delta trees

	4.4 Conclusions

	5 Vectorized execution model
	5.1 Properties of the vectorized execution model
	5.1.1 Interpretation overhead
	5.1.2 Instruction cache
	5.1.3 Processing unit size
	5.1.4 Code efficiency
	5.1.5 Block algorithms
	5.1.6 Scalability
	5.1.7 Query plan complexity and optimization
	5.1.8 Implementation complexity
	5.1.9 Profiling and performance optimization
	5.1.10 Comparison summary

	5.2 Implementing the vectorized model
	5.2.1 Efficient implementation requirements
	5.2.1.1 Bulk processing
	5.2.1.2 Data location and organization
	5.2.1.3 Compiler optimization amenability
	5.2.1.4 Conclusion

	5.2.2 Choosing the data organization models
	5.2.2.1 Block-data representation models
	5.2.2.2 NSM and DSM in-memory performance
	5.2.2.3 Choosing the data model

	5.2.3 Decomposing data processing
	5.2.3.1 Multiple-attribute processing
	5.2.3.2 Phase separation
	5.2.3.3 Branch separation

	5.2.4 Primitive implementation
	5.2.4.1 Primitive development and management
	5.2.4.2 Control dependencies
	5.2.4.3 Data dependencies
	5.2.4.4 SIMDization

	5.3 Case study: Hash-Join
	5.3.1 Problem definition
	5.3.2 Standard implementation
	5.3.3 Vectorized implementation
	5.3.3.1 Build phase
	5.3.3.2 Probe phase
	5.3.3.3 Performance

	5.4 Optimizing Hash-Join
	5.4.1 Best-Effort Partitioning
	5.4.2 Partitioning and cache associativity
	5.4.3 BEP performance
	5.4.4 BEP discussion

	5.5 Extending the vectorized world
	5.5.1 Overflow checking
	5.5.2 NULL handling
	5.5.3 String processing
	5.5.4 Binary search

	5.6 Conclusions

	6 Light-weight data compression
	6.1 Related work
	6.2 Super-scalar compression
	6.2.1 Design guidelines
	6.2.2 PFOR, PFOR-DELTA and PDICT
	6.2.3 Disk storage
	6.2.4 Decompression
	6.2.5 Compression
	6.2.6 Fine-grained access
	6.2.7 Compulsory exceptions
	6.2.8 RAM-RAM vs. RAM-cache decompression
	6.2.9 Improving memory bandwidth on multi-core CPUs
	6.2.10 Choosing compression schemes

	6.3 TPC-H experiments
	6.4 Inverted file compression
	6.5 Conclusions and future work

	7 Cooperative scans
	7.1 Traditional scan processing
	7.2 Cooperative Scans
	7.3 Row-wise experiments
	7.3.1 Comparing scheduling policies
	7.3.2 Exploring many different query mixes
	7.3.3 Scaling the data volume
	7.3.4 Many concurrent queries
	7.3.5 Scheduling-cost scalability

	7.4 Improving DSM scans
	7.4.1 DSM challenges
	7.4.2 Cooperative Scans in DSM
	7.4.3 DSM results
	7.4.3.1 Overlap-ratio experiments

	7.5 Cooperative Scans in a RDBMS
	7.5.1 ABM implementation
	7.5.2 Order-aware operators

	7.6 Related work
	7.7 Conclusions and future work

	8 Conclusions
	8.1 Contributions
	8.1.1 Improving in-memory query processing
	8.1.2 Improving processing of disk-resident data
	8.1.3 Balanced database system architecture

	8.2 Evaluation
	8.2.1 TPC-H performance
	8.2.2 Information retrieval with MonetDB/X100
	8.2.2.1 Expressing IR tasks as relational queries
	8.2.2.2 Performance on Terabyte TREC benchmark

	8.3 Future research directions
	8.3.1 Improving the vectorized execution model
	8.3.2 Storage-layer improvements
	8.3.3 Parallel execution
	8.3.4 Alternative hardware platforms

	Bibliography
	Summary / Samenvatting / Streszczenie

